Chapter 4

Tropospheric Chemistry and Air Pollution

Basic Concepts of Chemistry

- Source, sink, production, loss, destruction
- Mass, loading, burden, content, concentration, mixing ratio
- Residence time (burden/loss rate)
- Lifetime (e-folding time ?)
- 1 Tg = 10¹² grams; 1 Pg = 10¹⁵ grams = 1 Gt
- 1 mole = 6.022 x 10²³ molecules/atoms

Key Chemical Species in the Troposphere

- Main pollutants: O₃, PM, CO, NO₂, SO₂, NMVOC...
- Oxygen family: $O_x = O_3 + O(+NO_2)$
- Nitrogen family: NO_x = NO + NO₂
- Nitrogen family: $NO_y = NO_x + NO_z = NO_x + NO_3 + 2N_2O_5 + HONO + HNO_3 + PANs + ...$
- Ammonia species: NH_x = NH₃ + NH₄
- Carbon species: CO, CH₄, NMVOC
- Sulfur species: SO₂, SO₄, SO₃, ...
- Radicals: $HO_x = OH + HO_2$; RO, RO₂, NO₃, Halogen
- GHGs: $H_2O, CO_2, O_3, CH_4, N_2O, CFCs, HCFCs, HFCs, SF_6$
- PM species: $SO_4 + NO_3 + NH_4$, POA+SOA, BC, sea salts, dusts

Lifetime (Residence Time)

$$\tau = \frac{m}{F_{out} + L + D}$$

F_{out}, L and D:

- ➢ Is often proportional to m, thus T is an e-folding time
- \succ Can depend on m in high orders (e.g., for CH₄, CO...)
- > Can vary complexly in time, so does T (e.g., for CO₂)

Figure 3-1 One-box model for an atmospheric species X

Jacob, 1999

Mass, Reservoir, and Lifetime

Small M, small T, large S & L (e.g., radicals)

Large M, variable T, R & L, R-dependent L (e.g., CO₂)

Large M, M-dependent **T** (e.g., CH₄)

Basic Concepts of Chemistry

- Photolysis: A + hv → B + C
 d[A]/dt = j * [A]
 = actinic flux * cross_section * yield * [A]
- Reaction: A + B → C + D
 d[A]/dt = k * [A] * [B]
 lifetime of A: 1 / (k * [B])
- Equilibrium: A + B ↔ C + D
 d[A]/dt = k_f * [A] * [B] + k_b * [C] * [D] = 0

Bimolecular Reactions: Increase with T

- Collision theory
- Transition state theory
- Potential energy surface

Collision-like

С

- Electronic rearrangement
- Time to re-distribute energy

Arrhenius Form:

$$k = A \cdot e^{-\frac{E/R}{T}}$$

ollision theory:

$$A = \pi d^2 \left(\frac{8k_B T}{\pi \mu}\right)^{\frac{1}{2}}$$

$$\mu = \frac{m_A m_B}{m_A + m_B}$$

$$d = r_A + r_B$$

Most bimolecular reactions are fastened by increasing T, but some exhibit the opposite.

Pseudo-Steady-State Approximation (PSSA)

Form:
$$A \rightarrow B + C$$

Truth: $A + M \frac{y}{b} A^* + M$
 $A^* \stackrel{2}{\longrightarrow} B + C$
 $\frac{d[A]}{dt} = -k_{1J}[A][M] + k_{1b}[A^*][M]$
 $\frac{d[A^*]}{dt} = k_{1J}[A][M] - k_{1b}[A^*][M] - k_2[A^*]$
A* is in PSS:
 $\frac{d[A^*]}{dt} = k_{1J}[A][M] - k_{1b}[A^*][M] - k_2[A^*] = 0$
 $[A^*] = \frac{k_{1J}[A][M]}{k_{1b}[M] + k_2}$
If [M] is constant:
 $\frac{d[A^*]}{dt} = -\frac{k_{1J}^2k_2[M]^2[A]}{(k_{1b}[M] + k_2)^2}$

Seinfeld and Pandis, 2006

Termolecular Reactions: Decrease with T

Lindemann-Hinshelwood theory

Form: $A + B + M \rightarrow AB + M$

Truth:
$$A + B \stackrel{a}{\underset{r}{\rightleftharpoons}} AB^{\dagger}$$

 $AB^{\dagger} + M \stackrel{s}{\rightarrow} AB + M$

$$\frac{d[\mathbf{AB}]}{dt} = \frac{k_a k_s [\mathbf{A}][\mathbf{B}][\mathbf{M}]}{k_s [\mathbf{M}] + k_r}$$

Where: AB[†] is in Pseudo-Steady-State

if $k_r \gg k_s[\mathbf{M}]$ $\frac{d[\mathbf{AB}]}{dt} = \frac{k_a k_s}{k_r} [\mathbf{A}][\mathbf{B}][\mathbf{M}]$

$$k_r \ll k_s[\mathbf{M}]$$
 $\frac{d[\mathbf{AB}]}{dt} = k_a[\mathbf{A}][\mathbf{B}]$

Seinfeld and Pandis, 2006

Pseudo-Second-Order:

$$\frac{d[AB]}{dt} = k[A][B]$$

$$k = \frac{k_0[M]k_{\infty}}{k_0[M] + k_{\infty}} \qquad k_{\infty} = k_a$$

$$k_0 = \frac{k_a k_s}{k_r}$$

Troe (1983):

F = 0.6

$$k(T) = \begin{cases} \frac{k_0(T)[M]}{1 + \frac{k_0(T)[M]}{k_\infty(T)}} \end{cases} F^{\left\{ \left(1 + \left[\log_{10} \left(\frac{k_0(T)[M]}{k_\infty(T)} \right) \right]^2 \right)^{-1} \right\} \\ k_0(T) = k_0^{300} \quad (T/300)^{-n} \quad \text{cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \\ k_\infty(T) = k_\infty^{300} (T/300)^{-m} \quad \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \end{cases}$$

9

Basic Chemistry

- $NO + O_3 \rightarrow NO_2$ (R1)
- $NO_2 + hv \rightarrow NO + O$ (R2)
- $O + O_2 + M \rightarrow O_3 + M$ (R3)
- Thus, $[NO] / [NO_2] = j_{NO2} / (k * [O_3])$
- Here, O atom is in pseudo steady state 伪稳态
- Without perturbation, this is a null cycle
- This is one of the most important relations regulating concentrations of NO, NO₂ and O₃ in the troposphere
- \succ It leads to the chemical family of NOx = NO + NO₂

Basic Chemistry

- $OH + CO \rightarrow HO_2 + CO_2$ (R1)
- OH + VOC \rightarrow RO₂ \rightarrow ... \rightarrow HO₂ (R2)
- $HO_2 + NO \rightarrow NO_2 + OH$ (R3)
- Thus, $[OH] / [HO_2] = k_3 * [NO] / (k_1 * [CO] + k_2 * [VOC])$
- This is one of the most important relations regulating concentrations of OH and HO₂ in the troposphere.
- \succ It leads to the chemical family of HOx = OH + HO₂

- ▶ 臭氧是氧气的同素异形体,淡蓝色气体,液态为 深蓝色,固态为紫黑色。气味类似鱼腥味,浓度 过高时类似于氯气的气味。
- ▶ 1840年,由Schonbein发现。由于它的令人讨厌的 气味,Schonbein将其命名为Ozein,the Greek word for 'to smell',英语是Ozone。
- ▶ 1881年, Hartley第一个推测地面太阳光谱在300 nm处截断的原因是大气中臭氧吸收造成的。
- ➢ 1917年, Fowler和Strutt以及1921年Fabry和 Buisson用光谱分析方法验证了这一点。
- ▶ 1925年, Cabannes和Dufay指出了臭氧层大约在地 表以上几十公里的高度而不是在大气低层。
- ➢ 这些发现为上世纪30年代Sidney Chapman的理论 工作和Dobson的观测工作奠定了基础。

Stratospheric and Tropospheric Ozone

Sources of Tropospheric Ozone

Daytime versus Nighttime Chemistry of Ozone

Yan et al., 2018, ACP

Photochemistry for Tropospheric Ozone

Ozone Formation: Sensitivity to NOx and VOC

Ozone mixing ratio as a function of NOx and NMVOC emissions

Ozone Production in a CO-NOx-HOx System

Low-NOx limit

$$P_{HOx} \cong 2 k_{HO_2 + HO_2} [HO_2]^2$$
$$[HO_2] \cong \left(\frac{P_{HO_x}}{2 k_{HO_2 + HO_2}}\right)^{1/2}$$
$$P_{O_3} = k_{HO_2 + NO} \left(\frac{P_{HO_x}}{2 k_{HO_2 + HO_2}}\right)^{1/2} [NO_2]^2$$

High-NOx limit

$$P_{\text{HO}_x} \cong k_{\text{OH}+\text{NO}_2}[\text{OH}][\text{NO}_2]$$
$$[\text{OH}] = \frac{P_{\text{HO}_x}}{k_{\text{OH}+\text{NO}_2}[\text{NO}_2]}$$
$$k_{\text{CO}+\text{OH}}[\text{CO}][\text{OH}] = k_{\text{HO}_2+\text{NO}}[\text{HO}_2][\text{NO}]$$

$$[HO_2] = \frac{k_{\text{CO+OH}}[\text{CO}][\text{OH}]}{k_{\text{HO}_2+\text{NO}}[\text{NO}]}$$
$$[HO_2] = \frac{k_{\text{CO+OH}}P_{\text{HO}_x}[\text{CO}]}{k_{\text{HO}_2+\text{NO}}k_{\text{OH+NO}_2}[\text{NO}][\text{NO}_2]}$$

$$P_{O_3} = \frac{k_{\text{CO+OH}} P_{\text{HO}_x}[\text{CO}]}{k_{\text{OH+NO}_2}[\text{NO}_2]}$$

Seinfeld and Pandis, 2006

CO-led Ozone Production As a Function of NOx

Seinfeld and Pandis, 2006

Ozone Production Efficiency (OPE)

Regression OPE

Lagrangian OPE

More Chemistry

Gaseous chemistry (important in weak hv):

- NO + O₃ \rightarrow NO₂ + O₂
- $NO_2 + O_3 \rightarrow NO_3 + O_2$
- $NO_2 + NO_3 + M \leftrightarrow N_2O_5 + M$
- $NO_3 + VOC \rightarrow HNO_3 + carbonyl$
- NO₃ + VOC \rightarrow Organic nitrates
- $O_3 + VOC \rightarrow ...$

Heterogeneous chemistry (important in high-aerosol cases):

- $N_2O_5 + H_2O(s) \rightarrow 2 HNO_3$
- NO₂ + H₂O(s) \rightarrow HONO
- NO₂ + H₂O(s) \rightarrow NO₃⁻
- HO₂ + H₂O(s) \rightarrow 0.5 H₂O₂ (important in China ?)
- (important source of HONO and OH) (important in China ?)
- NO₂ + SO₂ + H₂O(s) \rightarrow SO₄⁻² (important in China ?, in high pH env.?)
- TMI catalyzed processes ??? (HO₂, SO₂; in low pH env.)

Budget of Tropospheric Ozone in 2009

				Glo	bal n	nodel	Two-wa	ay mo	del	Percenta	ge dif	ference		
Tropospheric budget	Tropospheric budget of ozone ^a													
Chemical loss of O_x (Tg)						4491 4537				1.0%				
Chemical production of O_x (Tg)					4885 4928				0.9%					
Dry deposition of O_x (Tg)						909		:	894	-1.7%				
STE of O_x (Tg) ^b						515			503	-2.3 %				
Dry deposition of O_3 (Tg)					882 867			867	-1.7%					
STE of O ₃ (Tg) ^b					488 478			478	-2.0 %					
O_3 burden (Tg)					384			1	348			-9.5%		
Mean TCO (DU)					34.5 31.5			-8.7%						
O ₃ lifetime (days)					26.1 23			3.5	-9.9%					
Tropospheric burdens and lifetimes of other species														
NO_x burden (TgN)				0.169			0.176				4.1%			
NMVOCs burden (TgC) ^c				10.1			10.2				1.0 %			
CO burden (Tg)				359		398				10.8 %				
OH number concentration (10^6 cm^{-3})				1.18		1.12				-5.0%				
OH-related MCF lifetime (yr) ^d				5.58		5.87				5.2 %				
OH-related methane lifetime (yr) ^d				9.63		10.12				5.1 %				
	MAM			JJA			SON				DJF			
	GB	TW	Diff. (%)	GB	TW	Diff. (%)	GB	TW	Diff. (%) GB	TW	Diff. (%)		
Chemical loss of O_x (Tg)	1087	1099	1.1 %	1252	1237	-1.2%	1116	1141	2.2%	6 1036	1060	2.3%		
Chemical production of O_x (Tg)	1197	1213	1.3 %	1446	1460	1.0%	1199	1211	1.0%	6 1042	1045	0.3 %		
O ₃ burden (Tg)	374	340	-9.1%	394	362	-8.0%	370	339	-8.4%	399	352	-11.7%		
Lifetime against chemical loss	31.4	28.3	-9.8%	28.7	26.7	-6.9%	30.3	27.1	-10.5 %	35.1	30.3	-13.6 %		
$(O_3 \text{ burden } / O_x \text{ loss})$														

 $O_x = O_3 + O + NO_2 + 2NO_3 + 3N_2O_5 + PANs + HNO_3 + HNO_4$ (Wu et al., 2007)

Tropospheric Ozone Column Detected From Space

2004/10–2010/12 mean; ~ 31 DU on average

December-January-February

March-April-May

Tropospheric column ozone, DU

Cooper et al., 2014, Elementa; OMI/MLS data from Ziemke et al.

Tropospheric Ozone Mixing Ratio Detected From Space

2004/10-2010/12 mean; in ppbv

December-January-February

June-July-August

September-October-November

Cooper et al., 2014, Elementa; OMI/MLS data from Ziemke et al.

Tropospheric Ozone Mixing Ratio Detected From Space

2004/10-2010/12 data; in ppbv

Maximum TCO (ppbv) from any month

Month of maximum TCO (ppbv)

Minimum TCO (ppbv) from any month

Month of minumum TCO (ppbv)

Cooper et al., 2014, Elementa; OMI/MLS data from Ziemke et al.

Vertical Profile of O₃ in the Troposphere

Comparisons with MOZIAC and HIPPO profiles

Yan Y.-Y. et al., ACP, 2014, 2016

Long-term Trends of Near-Surface Ozone

Tarasick et al., 2019 Elementa

Long-term Trends of Near-Surface Ozone

Surface and lower tropospheric ozone trends beginning 1950-1979 through 2010

Mostly rural sites except in Asia Circle: Surface site below 1km Triangle: Surface site above 1km Square: Ozonesonde Diamond: Aircraft

Cooper et al., 2014, Elementa

Contrasting Tends of O3 at Different Times of Day

1995-2014 trends of O_3 at 93 EU EMEP sites (Yan et al., 2018b, ACP)

Factoring Affecting O₃ Growth between 1980 and 2010

Zhang et al., 2016, Nature Geoscience

Atmospheric OH

- \succ OH sources: O₃ photolysis, HONO photolysis, VOC ozonolysis, NO+HO₂, NO+RO₂...
- \blacktriangleright OH sinks: OH+CO, OH+CH₄, OH+NMVOC, OH+NO₂, etc.
- \succ OH lifetime: ≤ 1s
- \blacktriangleright HO₂ lifetime: 1-2 mins

Turner et al., 2019, PNAS

Tropospheric OH: The Cleanser (pacman)

Production:

- $O_3 + hy + H_2O \rightarrow O_2 + 2OH$ ($\lambda < 330$ nm)
- HONO + hy \rightarrow OH + NO
- $O_3 + VOC \rightarrow ...$
- Isoprene + OH \rightarrow OH + ... ???
- NO + HO₂ \rightarrow OH
- NO + RO₂ \rightarrow HO₂ + ... \rightarrow OH
- $HO_2 + O_3 \rightarrow 2O_2 + OH$

Loss:

- OH + $CO \rightarrow HO_2$
- OH + VOC \rightarrow RO₂
- $OH + O_3 \rightarrow O_2 + HO_2$
- $OH + NO_2 + M \rightarrow HNO_3 + M$

Budget of Tropospheric OH

	Global model ¹	Two-way coupled model ¹
Total loss (Tgyr ⁻¹)	3780	3756
OH + CO	1440 (38 %)	1452 (38%)
$OH + CH_4^2$	540 (14%)	516 (14%)
OH + NMVOCs	840 (22%)	852 (23 %)
$OH + O_3$	204 (5%)	204 (5%)
$OH + HO_y$	396 (10%)	384 (10%)
$OH + NO_y$	72 (2%)	60 (2%)
$OH + H_2$, SO_2 , etc.	132 (9%)	132 (8%)
Total production (Tgyr ⁻¹)	3780	3756
Photolysis of O ₃	1608 (43 %)	1584 (42%)
Photolysis of other species	480 (12%)	504 (14%)
Reactions	1692 (45%)	1668 (44%)
Air mass weighted mean concentration (10 ⁵ cm ⁻³)	12.4	11.9
MCF loss rate weighted mean concentration (10 ⁵ cm ⁻³)	12.5	12.1
Methyl chloroform lifetime (yr) ³	5.3	5.5

甲基氯仿 MCF: Methyl chloroform (CH_3CCl_3) is an excellent tracer to study changes in OH

$$[OH] \propto k_G = \frac{E}{G} - \frac{dG/dt}{G}$$

Factors Determining Tropospheric OH

Murray et al., 2014, ACP

Murray et al., 2021, PNAS

Global OH Concentrations Near the Surface

January July OH January at Surface (2001(v5.04)) OH July at Surface (2001(v5.04)) 90°N 90°N 60°N 60°N 30°N 30°N D° D° 30°S 30°S 60°S 60°S 120°W 120°E 60°W •0 60°E 120°W 60°W 60°E 120°E U, 0.67 1.33 2.00 1E6 cm⁻³ 0.00 0.00 0.67 1.33 2.00 1E6 cm

Tropospheric OH: Meridional-Vertical Cross Section

Tropospheric OH July -- MOZART2

Tropospheric OH (January) – MOZART2

Modeled Change in Tropospheric OH: 1850-2000

37

Obs-based Estimate of OH Temporal Variation

Obs-based Estimate of Trop. OH Interannual Variability

Montzka et al., 2011, Science

Unclear Recent Trend of OH Related to CH₄ Growth

Bias in box modeling affecting MCF-based OH estimate:

- 1. Inter-hemispheric transport
- 2. Sampling bias
- 3. N/S OH ratio
- 4. MCF loss to stratosphere

$$\frac{\mathrm{d}X_{\mathrm{NH}}}{\mathrm{d}t} = E_{\mathrm{NH}} - (k_{\mathrm{OH}}[\mathrm{OH}]_{\mathrm{NH}} + l_{\mathrm{strat}} + l_{\mathrm{other}})X_{\mathrm{NH}}$$
$$-k_{\mathrm{IH}}(X_{\mathrm{NH}} - X_{\mathrm{SH}}),$$
$$\frac{\mathrm{d}X_{\mathrm{SH}}}{\mathrm{d}t} = E_{\mathrm{SH}} - (k_{\mathrm{OH}}[\mathrm{OH}]_{\mathrm{SH}} + l_{\mathrm{strat}} + l_{\mathrm{other}})X_{\mathrm{SH}}$$
$$+ k_{\mathrm{IH}}(X_{\mathrm{NH}} - X_{\mathrm{SH}}).$$

Near-Surface Air Pollution

- Outdoor Air Pollution
 - ✓ Ozone
 - ✓ PM_{2.5}
 - ✓ Acid deposition
- Consequences
 - ✓ Health impacts
 - ✓ Agriculture
 - ✓ Ecosystems

41

Health Impacts of Air Pollution

https://www.thelancet.com/infographics-do/gbd-2019

Population in 2017

Population in 2100

Health Impacts of Air Pollution

Di et al., 2017 NEJM

Table 2. Risk of Death Associated with an Increase of 10 μ g per Cubic Meter in PM _{2.5} or an Increase of 10 ppb in Ozone Concentration.*						
Model	PM _{2.5}	Ozone				
	hazard ratio (95% CI)					
Two-pollutant analysis						
Main analysis	1.073 (1.071–1.075)	1.011 (1.010–1.012)				
Low-exposure analysis	1.136 (1.131–1.141)	1.010 (1.009–1.011)				
Analysis based on data from nearest monitoring site (nearest-monitor analysis)†	1.061 (1.059–1.063)	1.001 (1.000–1.002)				
Single-pollutant analysis‡	1.084 (1.081–1.086)	1.023 (1.022–1.024)				

Ozone Exposure Can Lead to Reduced Crop Yields

Crop	Country		Yield loss	95% confidence		
			(%)	Upper boundary (%)	Lower boundary (%)	
Wheat	China		32.8	36.9	28.2	
	Japan		15.8	19.5	12.2	
	South Kor	ea	27.8	32.2	23.3	
Rice	China	All	23.0	30.3	17.4	
		Inbred	12.2	15.9	9.2	
		Hybrid	29.8	38.6	23.0	
	Japan		5.1	8.1	3.2	
	South Kor	ea	10.7	14.9	7.7	
Maize	China		8.6	10.4	6.4	
	South Kor	ea	4.7	5.6	3.5	

Dose-response Functions :

$$AOT40 = \sum_{i=1}^{n} ([O_3]_i - 0.04), \text{ for } o_3 \ge 0.04ppm$$

RY (relative yield) = $a \times AOT40 + b$

WHO Air Quality Guidelines

污染物	取值时间	2005 AQG	2021 AQG	
$\mathbf{D}\mathbf{M} = u \alpha / m^3$	Annual	10	5	
$PM_{2.5}, \mu g/m^3$	24-hour ^a	25	15	
PM10, μg/m ³	Annual	20	15	
	24-hour ^a	50	45	
O ₃ , μg/m ³	Peak season ^b	—	60	
	8-hour ^a	100	100	
NO malana	Annual	40	10	
$NO_2, \mu g/m^2$	24-hour ^a	—	25	
SO ₂ , μ g/m ³	24-hour ^a	20	40	
CO , mg/m ³	24-hour ^a	—	4	

WHO, 2021 表格来自https://cese.pku.edu.cn/kycg/131451.htm

Ambient Air Quality Standards

Air Quality Index (China)

		污染物项目浓度限值									
						颗粒物					颗粒物
<u>ک</u> ۱ ۱	空气质量 分指数 (IAQI)	二氧化硫	二氧化硫	二氧化氮	二氧化氮	(粒径小	一氧化碳	一氧化碳	臭氧 (O ₃) 1 小时 平均/ (µg/m ³)	臭氧 (O ₃) 8 小时滑 动平均/ (µg/m ³)	(粒径小
		(SO ₂)	(SO_2)	(NO_2)	(NO_2)	于等于	(CO)	(CO)			于等于
		24 小时	1 小时	24 小时	1 小时	10µm)	24 小时	1 小时			2.5µm)
		平均/	平均/	平均/	平均/	24 小时	平均/	平均/			24 小时
		$(\mu g/m^3)$	$(\mu g/m^3)^{(1)}$	$(\mu g/m^3)$	$(\mu g\!/\!m^3)^{(1)}$	平均/	(mg/m^3)	$(mg/m^3)^{(1)}$			平均/
						$(\mu g/m^3)$					$(\mu g/m^3)$
	0	0	0	0	0	0	0	0	0	0	0
优	50	50	150	40	100	50	2	5	160	100	35
良	100	150	500	80	200	150	4	10	200	160	75
轻度	150	475	650	180	700	250	14	35	300	215	115
中度	200	800	800	280	1 200	350	24	60	400	265	150
重度	300	1 600	(2)	565	2 340	420	36	90	800	800	250
严重	400	2 100	(2)	750	3 090	500	48	120	1 000	(3)	350
/ =	500	2 620	(2)	940	3 840	600	60	150	1 200	(3)	500

表 1 空气质量分指数及对应的污染物项目浓度限值

2018年9月1日前:参比状态为1atm、273K(气体和颗粒物) 2018年9月1日后:参比状态为1atm、298K(气体);环境状况(颗粒物)

Anthropogenic Emissions in China

Anthropogenic Emissions in China: 1990-2020

Increases of NO₂ VCD Observed from Space

Tropospheric NO₂ vertical columns (2003,12~2004,11)

(Richter et al, 2005: Nature, 437:129-132)

Increases of NO₂ VCD Observed from Space

Satellite+Model Derived High-res (5 km) Emissions Reveal Biases in Bottom-up Inventories

Kong et al., 2019, ACP; Kong et al., 2022, EST

High-Resolution NOx Emission Data Reveal Anthropogenic Sources Missing in Inventories

High-Resolution NOx Emission Retrieval Data Reveal Large Inter-City Disparity in Anthro. Emis. Trends

Emission change versus Economic volume

Kong et al., submitted

Chinese Emission Trends over 2013–2020 Constrained from Near Surface Concentration Measurements

Impacts of COVID-19 on Chinese Emissions Constrained from Surface Concentration Measurements

Changes in CO over East Asia

CO emissions over 2005-2016 based on MOPITT v7 (Zheng et al., ERL, 2018)

Trends of VCDs of HCHO in Asia: 1997 – 2009

OMI VCD by BIRA (De Smedt et al., 2010 ACP)

Multiple VCD products (Shen et al., 2019 GRL)

Emission constraint for 2007 based on OMI & GOME-2A HCHO and CHOCHO data (Cao et al., 2018 ACP)

OMI-retrieved VCDs of Tropospheric Ozone

Background O₃ Concentrations are Increasing

Growing O₃ Pollution over Beijing

Ma et al., 2016; Ding et al., 2008, ACP

中国生态环境公报2023

- ➢ 2023年每日MDA8 O₃的90%分位值的 平均值为144 µg/m³, 比2022年降低0.7%
- ▶ 2022-2024年稳定在 144-145 µg/m³
- ▶ 华北、长三角、珠 三角、成渝地区、 关中平原的污染状 况尤其突出
- ▶ 现有观测数据主要 覆盖城镇区域

按照我国《环境空气质量评价技术规范(试行)》(HJ663—2013),采用臭 氧日最大 8 小时滑动平均值的第 90百分位数(MDA8-90)进行臭氧年评价。

China's Ozone Pollution Trend: 2015-2019

China's Ozone Pollution Trend: 2015-2019

China's Ozone Pollution Trend: 2013-2023

中国地表观测日最大8小时平均臭氧(单位: ppbv)

来源:叶兴沛

Controversy in Drivers of Ozone Trend over China

Li et al., 2019, PNAS

Controversy in Drivers of Ozone Trend over China

Drivers of Ozone Trend over China

Tan et al., 2023, EST

Rapid Ozone Growth over Tibet Plateau Caused by Local and Nonlocal Sources

Deseasonalized ozone growth

Xu et al., ACP, submitted

Quantity Emitted into Retroplume (QNR) for NOx

Morphology of Particulate Matter

PM Sources, Sinks, and Transformation

PM Air Pollution: Sources and Sizes

Primary aerosols: anthropogenic and natural; small and large

- . BC, POC anthropogenic; typically small, i.e., ≤ 2.5 μ m
- Industrial dust anthropogenic; small and large
- Fugitive dust anthropogenic; small and large
- Desert dust natural; small and large; not important except in spring
- Sea salt natural; small and large; not important over noncoastal lands

Secondary aerosols: mostly anthropogenic; mostly small

- Sulfate anthropogenic; small
- Nitrate anthropogenic; typically small
- Ammonium anthropogenic; small
- SOA anthropogenic and natural; typically small; natural sources important mainly in summertime

Chemical Formation of Secondary Inorganic Aerosols

Туре	Reaction #.	Reaction	Contributions to PM2.5
original CMAQ			
Gas-phase chemistry	R1	$\mathrm{SO_2}{+}\mathrm{OH}{+}\mathrm{H_2O}{+}\mathrm{O_2}{\rightarrow}\mathrm{H_2SO_4}{+}\mathrm{HO_2}$	Sulfate
(All species in gas phase)	R2	$NO_2 + OH \rightarrow HNO_3$	Nitrate
	R3	$N_2O_5 + H_2O \rightarrow 2HNO_3$	Nitrate
	R4	$NO_3 + HO_2 \rightarrow HNO_3 + O_2$	Nitrate
	R5	$NTR^{a} + OH \rightarrow HNO_{3}$	Nitrate
	R6	$NO_3 + VOCs^b \rightarrow HNO_3$	Nitrate
Aqueous-phase kinetic chem- istry	R7	$\mathrm{HSO}_3^-\mathrm{+}\mathrm{H_2O_2} \to \mathrm{SO}_4^{2-}\mathrm{+}\mathrm{H^+\!+}\mathrm{H_2O}$	Sulfate
(All species in aqueous phase)	R8	$HSO_{2}^{-} + MHP^{c} \rightarrow SO_{4}^{2-} + H^{+}$	Sulfate
	R9	$HSO_3^{\rightarrow} + PAA^d \rightarrow SO_4^{\rightarrow} + H^+$	Sulfate
	R10	$SO_2 + O_3 + H_2O \rightarrow SO_4^2 + 2H^+ + O_2$	Sulfate
	R11	$HSO_3^- + O_3 \rightarrow SO_4^{2-} + H^+ + O_2$	Sulfate
	R12	$SO_3^2 + O_3 \rightarrow SO_4^2 + O_2$	Sulfate
	R13	$SO_2 + H_2O + 0.5O_2 + Fe(III)/Mn(II) \rightarrow SO_4^{2-} + 2H^+$	Sulfate
Heterogeneous	R14	$N_2O_5(g) + H_2O(aq) \rightarrow 2HNO_3(aq)$	Nitrate
chemistry ^e	R15	$2NO_2 (g) + H_2O (aq) \rightarrow HONO (aq) + HNO_3 (aq)$	Nitrate
revised CMAQ			
Newly added	R16	$H_2O_2(g) + Aerosol \rightarrow Products$	Affect R7
heterogeneous chemistry	R17	HNO_3 (g) + Aerosol $\rightarrow 0.5NO_3 + 0.5NO_x$ (g)	Renoxification
	R18	$HO_2(g) + Fe(II) \rightarrow Fe(III) + H_2O_2$	Affect R4 and R7
	R19	N_2O_5 (g) + Aerosol $\rightarrow 2NO_3^-$	Nitrate
	R20	$NO_2(g) + Aerosol \rightarrow NO_3$	Nitrate
	R21	NO_3 (g) + Aerosol $\rightarrow NO_3$	Nitrate
	R22	$O_3(g) + Aerosol \rightarrow Products$	Affect R10-R12
	R23	$OH(g) + Aerosol \rightarrow Products$	Affect R1-R2, R5
	R24	$SO_2(g) + Aerosol \rightarrow SO_4^{2-}$	Sulfate

Zheng et al., 2015, ACP

Growing Fraction of Secondary PM_{2.5} with Haze Severity

Kebin He

Increasing Importance of Heterogeneous Processes in Sulfate Formation at High PM Situations

Wang et al., ESTL, 2025

Heterogeneous Process

(Effective) uptake coefficient, γ

- Key processes:
 - HO₂ uptake
 - Sulfate formation
 - NO₂, N₂O₅, HNO₃, HONO
 - Carbon ageing
 - Halogen process
- > Key questions:
 - pH in ambient aerosols
 - Amount & chemistry of dissolved TMI
 - Roles of organics
 - Suitability of current theory
 & model in polluted cases

Heterogeneous Process: Roles of pH and TMI

HO₂ Uptake

pH Dependence of TMI

Sulfate Formation

- Mass fraction of Cu in PM over E. China is 1.6-12 times that in the US, but the fraction of dissolved Cu depends on pH and is not clear.
- Roles of dissolved Fe (sole catalytic effect + coupled effect with Cu)?
- Roles of organics?

NO₂-catalyzed Sulfate Formation at High pH

Aqueous phase:

 $\begin{array}{rl} 2 \; NO_2 \left(aq \right) \; + \; HSO_3^{-} \left(aq \right) + H_2O \left(aq \right) \rightarrow 3 \; H^+ (aq) \\ + \; 2 \; NO_2^{-} \left(aq \right) \; + \; SO_4^{\; 2-} (aq) \end{array}$

Cheng et al., 2017, Science Advance

Cloud/fog (large):

 $SO_2(g) + 2NO_2(g) + 2H_2O(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$

+ 2HONO(g).

Aerosol (small, easily acidified): $2NH_3(g) + SO_2(g) + 2NO_2(g) + 2H_2O(aq) \rightarrow 2NH_4^+(aq)$

 $+\operatorname{SO}_4^{2-}(\operatorname{aq})+2\operatorname{HONO}(g).$

Wang et al., 2016, PNAS

Mn-catalyzed Formation of Sulfate on Aerosol Surface

$$SO_{2} + O_{2} + Mn(OH)_{x}^{(3-x)} \to SO_{5}^{\cdot-} + Mn^{2+}, x = 1, 2$$

$$SO_{5}^{\cdot-} + Mn^{2+} + H^{+} \to Mn(OH)_{x}^{(3-x)} + HSO_{5}^{-},$$

$$NH_{3} + HSO_{5}^{-} + SO_{2} + H_{2}O \to NH_{4}^{+} + SO_{4}^{2-}.$$

$$\frac{d[SO_{4}^{2-}]}{dt} = k \times f(H^{+}) \times f(T) \times f(I) \times [Mn^{2+}] \times [SO_{2}(g)] \times A$$

Wang et al., 2021, Nature Communications

Conquering Challenge of Online Aerosol pH Measurement

Dichroic mirror

Window

Orifices

Window

Beam dumper

Mikinori Kuwata @ PKU:

- > The only one instrument that is capable to measure pH of suspending sub-micrometer aerosol particles (Li and Kuwata, 2023)
- First demonstration of the limitation of thermodynamic models for estimating pH

Sulfate-Nitrate-Ammonium Interactions

Carbon-Nitrogen-Sulfur Interactions

China Has World's Most Severe PM Pollution

Surface PM_{2.5} concentration derived from satellite

v.s. WHO Guideline: $10 \ \mu g/m^3$, WHO IT1: $35 \ \mu g/m^3$

Seasonal Variation of PM_{2.5} in China

Severe Haze in 2013

11月23日18时发布

Oct 28-29, 2013

中度器

10月28日06时发布

Nov 23-24, 2013

中度器

重度羅

12月7日10时发布

中度器

重度器

Dec 25, 2013

中度羅

重度器

12月25日06时发布

Severe Haze in January 2013

贺克斌,2014

Lin and Li, AE, 2016

Contribution of Meteorology to Jan 2013 Haze

Zheng et al., 2015, ACP

PM_{2.5} Pollution Changes in China

中国生态环境公报2023

Drivers of PM_{2.5} Pollution Trends over China

Population-weighted PM_{2.5} pollution: 2002–2017

Geng et al., 2021, Nature Geoscience

Interactions of Ozone and PM

Effects of ozone on PM:

- \checkmark Oxidation (O₃, OH, H₂O₂) to form secondary PM
- ✓ Meteorology (small effects)
- ✓ Biogenic emissions

Effects of PM on ozone:

- \checkmark Heterogeneous processes of oxidants (e.g., HO₂)
- ✓ Radiation (actinic flux)
- ✓ Meteorology
- ✓ Biogenic emissions

Acid Deposition

Gaseous: $SO_2 + OH + H_2O \rightarrow H_2SO_4 + HO_2$ Aqueous: $SO_2 + O_3 \rightarrow ... \rightarrow H_2SO_4$ Aqueous: $SO_2 + H_2O_2 \rightarrow ... \rightarrow H_2SO_4$ Hetero: $NO_2 + SO_2 + H_2O(s) \rightarrow SO_4^{-2}$? Gaseous: $NO_2 + OH + M \rightarrow HNO_3 + M$ Hetero: $NO_2 + H_2O(s) \rightarrow NO_3^{-2}$? Hetero: $N_2O_5 + H_2O(s) \rightarrow 2HNO_3$ VOC + OH $(NO_x, O_3, H_2O_2) \rightarrow ... \rightarrow organic acids$

Acids are balanced by mineral or ammonium ions

Acid Deposition

中国降水pH值分布

Quiz

- 1. Based on the collision theory, why does the reaction rate constant of bimolecular reactions tend to increase with T?
- 2. Can we consider NO₂ and ozone to be in the same chemical family (i.e., Ox)?
- 3. Potential human influences on recent tropospheric OH trends
- 4. How would NOx emissions affect the lifetime of OH?
- 5. Impacts of NOx on ozone at different cases: troposphere, boundary layer, urban, rural
- 6. Ozone production is normally VOC-limited in urban areas and NOxlimited in surrounding rural areas. To control urban ozone pollution, should we control NOx or VOC emissions?
- 7. How would changes in NOx affect the formation of nitrate and sulfate?
- 8. Why did China's $PM_{2.5}$, but not ozone, pollution decline with emission control over the past decade?
- 9. How can ozone and PM pollution affect each other?

Meridional – Seasonal Cross Section

98

Long-term Ozone Trends at Background Sites

Have human activities changed the oxidizing capacity O₃ of the atmosphere?

Latitude

 → Since pre-industrial times CO has increased by factors of 3-4;
 NO has increased by factors of 2-8
 What has happened to OH?

> NO $\uparrow \rightarrow$ increase in OH CO $\uparrow \rightarrow$ decrease in OH

→ Little change in OH globally (buffering)

Wang & Jacob, 1999

Meridional Distribution of Tropospheric Ozone

FIGURE 5.6 Seasonally averaged meridional distribution of ozone according to the analysis of Fishman and Crutzen (1978a, b). Contours indicate equal mixing ratios (unit: nmol mol^{-1}).

- An excess of ozone in the Northern Hemisphere at altitudes below about 5 km
- Northern Hemisphere contains 40% more zone on average than the Southern Hemisphere
- The ozone concentrations in the Tropics are lower than at midlatitudes

Simplified CO/CH₄/OH Chemistry

Anthropogenic Emissions in China: 2000-2014

Increases of NO₂ VCD: West versus East China

OMI NO₂ Trends over 2005 – 2013

Cui et al., 2	2016 <i>,</i> ACP	Region	Average NO ₂ in 2005^{a} 10^{15} molecules cm ⁻²	$\begin{array}{c} \text{NO}_2 \text{ trend}^b \\ (\% \text{ yr}^{-1}) \end{array}$	NO _x emission reduction plan of 2015 $(\%)^{c}$
North	Northwest	Gansu Inner Mongolia Ningxia Qinghai Shaanxi Xinjiang	0.9 (0.4, I) 1.1 (0.4, I) 1.4 (0.4, I) 1.0 (0.5, II) 2.3 (0.5, II) 1.0 (0.5, II)	$7.5 \pm 1.2 \\ 10.2 \pm 1.3 \\ 12.3 \pm 1.7 \\ 11.2 \pm 1.2 \\ 10.5 \pm 1.0 \\ 15.1 \pm 2.0$	$3.1 \\ 5.8 \\ 4.9 \\ -15.3 \\ 9.9 \\ 0$
	Southwest	Chongqing Guangxi Guizhou Sichuan Yunnan	2.2 (0.5, III) 1.2 (0.5, III) 1.3 (0.5, III) 1.7 (0.5, III) 0.7 (0.5, III)	$7.8 \pm 0.9 \\ 4.0 \pm 0.5 \\ 6.9 \pm 1.0 \\ 6.1 \pm 0.7 \\ 4.2 \pm 0.3$	6.9 8.8 9.8 6.9 5.8
	Region	West Northwest Southwest BTH YRD PRD	1.3 (0.5, II) 1.2 (0.5, II) 1.4 (0.5, III) 9.2 (0.7, IV) 7.2 (1.2, V) 8.0 (1.2, VI)	$8.6 \pm 0.9 \\11.3 \pm 1.0 \\5.9 \pm 0.6 \\5.3 \pm 0.8 \\4.1 \pm 0.6 \\-3.3 \pm 0.3$	5.7 4.5 7.6 13.9 17.7 16.9

Yan et al., 2017

Satellite+Model Derived High-res (5 km) Emissions Reveal Biases in Bottom-up Inventories

Kong et al., 2019, ACP

Changes in Tropospheric CO: 2000-2012

Trends of VCDs of HCHO in Asia: 1997 – 2009

107 De Smedt et al., 2010

Changes in O3 and PM2.5 Pollution over BTH

After statistical adjustment for meteorological changes

Populor O not Service and Serv

北京大学统计中心 108
China Is Facing Increasingly Severe Ozone Pollution

Trends of O₃ in Beijing and PRD

Hong Kong: Daytime O₃ concentration

Background O₃ Concentrations are Increasing

OMI-retrieved VCDs of Tropospheric SO₂

а

Mclinden et al., 2016 Nature Geoscience

NO_x-catalyzed Sulfate Formation

NO_x-catalyzed sulfate formation on mineral dust surface:

 $SO_2 + 2NO_2 + M \rightarrow M - SO_4 + 2NO_4$

 $2NO\!+\!O_2\!+\!M\!\rightarrow\!2NO_2$

 $SO_2(g) + 2NO_2(g) + 2H_2O(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$

+ 2HONO(g).

PM (small, easily acidified): $2NH_3(g) + SO_2(g) + 2NO_2(g) + 2H_2O(aq) \rightarrow 2NH_4^+(aq)$

Annual Average PM_{2.5} in 74 cities, 2013

Growing Fraction of Secondary PM_{2.5} with Time at Beijing

Trends of PM₁₀ and AOD: 2005 – 2010

Lin et al., 2010

Acid Deposition

Gaseous: $SO_2 + OH + H_2O \rightarrow H_2SO_4 + HO_2$ Aqueous: $SO_2 + O_3 \rightarrow ... \rightarrow H_2SO_4$ Aqueous: $SO_2 + H_2O_2 \rightarrow ... \rightarrow H_2SO_4$ Hetero: $NO_2 + SO_2 + H_2O(s) \rightarrow SO_4^{-2}$? Hetero: $TMI + SO_2 + H_2O(s) \rightarrow SO_4^{-2}$? Gaseous: $NO_2 + OH + M \rightarrow HNO_3 + M$ Hetero: $NO_2 + H_2O(s) \rightarrow NO_3^{-2}$? Hetero: $N_2O_5 + H_2O(s) \rightarrow 2HNO_3$ VOC + OH $(NO_x, O_3, H_2O_2) \rightarrow ... \rightarrow organic acids$

Acids are balanced by mineral or ammonium ions

Acid Deposition

Acid Rain in China

2011: 12.9% of China's land is affected by acid rain 2015: 7.6% of China's land is affected by acid rain

Growth of NO₂ VCDs over 2005–2013: West vs. East China

10 5 0 -5 NW BTH YRD PRD

Yan et al., in prep Annual Mean (10¹⁵ cm⁻²) Trend (10¹⁵ cm⁻² yr⁻¹) % Trend (% yr⁻¹) DOMINO NO₂ VCD 50°N 45°N 40°N 35°N 30°N 25°N 20°N 0.0 -10 10 20 < 0.1 0.5 2 4 6 10 14 20 28 32 < 0.0 0.08 -20 > -1.6 -0.3 -0.08 0.3 16

Cui et al., 2016 ACP

Satellite+Model Derived High-res (25 km) Emissions Reveal Urban Biases in Bottom-up Inventories

Anthropogenic Emissions in China: 1990-2010

Anthropogenic Emissions in China: 2010-2017

Zheng et al., ACP, 2018

Recent Reductions in NO₂ VCD over China

Liu et al., 2016, ERL

124

Changes in Tropospheric CO: 2000-2016

column (10¹⁸ molecules/cm²)

8

CO column based on multiple products (Worden et al., 2013 ACP)

E. China: -1.6% – -1% yr⁻¹

Changes in CO at 700 hPa: 2004-2012

Yan et al., 2017

Speciated PM Measurements in China

Fang et al., 2009

Trends of Visibility and AOD over China: 1960 – 2014

Lin et al., 2013, AOSL; Li et al., 2016, RoG