Chapter 8

Economic Globalization, Trade and Pollution Transfer

Atmospheric Transport of Chinese Pollution

Yu et al., 2012, Science: E. Asian anthropogenic PM causes 6% of N.A. DRE

Cooper et al., 2010, Nature: Air transported from Asia to W. US contains greatest increase of O₃

Verstraeten et al., 2015, Nat. Geos.:
Rising Chinese emissions offset 43% of FT O₃ reduction over W. US.

Increasing Role of Atmospheric Transport to Beijing's PM_{2.5}

Sources of Beijing's PM_{2.5} (北京市生态环境局, 2021)

✓ 32±4% in 2014 (第一轮)
✓ 34±8% in 2018 (第二轮)
✓ 42±16% in 2021 (第三轮)

Globalizing Air Pollution

via Atmospheric Transport, Economic Trade and Their Synergy

Lin JT et al., PNAS 2014; Lin JT et al., Nature Geoscience 2016 Zhang Q et al., Nature 2017; Lin JT et al., Nature Comm. 2019 Wang JX et al., Science Bulletin, 2019; Lin JT et al., Nature Geoscience, 2022 Chen LL et al., Science Bulletin, 2022; Xu JW et al., ACP, 2023, Highlight Paper Kong H et al., Nature Geoscience, 2023, Nat Res Highlight; Lin JT et al., under review

Globalizing Air Pollution

Lin et al., under review

An Interdisciplinary Approach to Calculating Globalizing Air Pollution

Lin et al., under review

Emissions Associated with Production, Consumption & Trade

Huo et al., 2014

Production, Final Consumption, Intermediate Consumption

Structure Path Analysis

Source: Da Pan

Input-Output Analysis Based on Bilateral Trade

Single Region Input-Output Table

	Intermediate use			Final demand			Export	Import	Total
	Sector 1		Sector n	Sector 1		Sector m	Export		output
Intermediate input	z ₁₁		Z _{1n}	C ₁₁		C _{1m}	e1	m ₁	x ₁
	Z _{n1}		Z _{nn}	C _{n1}		C _{nm}	e _n	m _n	x _n
Value added	v ₁		v _n						
Total input	x ₁		x _n						

Input-Output Analysis Based on Bilateral Trade

Direct requirement coefficie	nt matrix:	$\mathbf{A} = \mathbf{A}^{d} + \mathbf{A}^{m}$			
Final demand:		$C = C^{d} + C^{m}$			
Import:		$\boldsymbol{M} = \mathbf{A}^{\mathrm{m}}\boldsymbol{X} + \boldsymbol{C}^{\mathrm{m}}$			
Thus:	$X = \mathbf{A}X + \mathbf{C} + \mathbf{A}$	E-M			
	$= (\mathbf{A}^{d} + \mathbf{A}^{m})$	$X + (C^{d} + C^{m}) + E - M$			
	$= \mathbf{A}^{\mathrm{d}} \mathbf{X} + \mathbf{C}^{\mathrm{d}}$	+ <i>E</i>			
	$= \left(\mathbf{I} - \mathbf{A}^{\mathrm{d}}\right)^{-1}$	$\left[\mathbf{I} - \mathbf{A}^{\mathrm{d}}\right]^{-1} \mathbf{C}^{\mathrm{d}} + \left(\mathbf{I} - \mathbf{A}^{\mathrm{d}}\right)^{-1} \mathbf{E}$			
	Domestic output for domestic cons.	Domestic output for export			
		·			

Emissions Embodied in Export Based on Bilateral Trade

Emissions embedded in export:	$EEE = F \cdot X^e$				
Total emissions:	$P = F \cdot X$				
Total output:	X				
Total output for export (based on IOA):	$X^e = \left(\mathbf{I} - \mathbf{A}^{\mathrm{d}}\right)^{-1} E$				
Emission intensity:	F where $F_i = \frac{P_i}{X_i}$				
Domestic direct requirement coefficient matrix:	A ^d				
Lin at al. 2014 DNAC					

Emissions Embodied in Bilateral Trade

Emissions embedded in export:

$$EEE = \mathbf{F} \cdot \mathbf{X}^{\mathbf{e}} = \mathbf{F} \cdot \left(\mathbf{I} - \mathbf{A}^{\mathrm{d}}\right)^{-1} \mathbf{E}$$

Emissions avoided by import:

$$EAI = \mathbf{F} \cdot \mathbf{X}^{\mathbf{m}} = \mathbf{F} \cdot \left(\mathbf{I} - \mathbf{A}^{\mathrm{d}}\right)^{-1} \mathbf{M}$$

Emissions embedded in import:

Rough approximation
$$EEI = EAI \cdot \frac{(P/GDP)_i}{(P/GDP)_0}$$

Emissions embedded in net trade:

$$EET = EEE - EEI$$

Multi-Regional Input-Output Analysis

• A bigger matrix to describe supply chain

$$\begin{bmatrix} x^{1} \\ x^{2} \\ x^{3} \\ \vdots \\ x^{m} \end{bmatrix} = \begin{bmatrix} A^{1,1} & A^{1,2} & A^{1,3} & \dots & A^{1,m} \\ A^{2,1} & A^{2,2} & A^{2,3} & \dots & A^{2,m} \\ A^{3,1} & A^{3,2} & A^{3,3} & \dots & A^{3,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A^{m,1} & A^{m,2} & A^{m,3} & \dots & A^{m,m} \end{bmatrix} \begin{bmatrix} x^{1} \\ x^{2} \\ x^{3} \\ \vdots \\ x^{m} \end{bmatrix} + \begin{bmatrix} \Sigma_{s} y^{1,s} \\ \Sigma_{s} y^{2,s} \\ \vdots \\ \Sigma_{s} y^{m,s} \end{bmatrix}$$

$$x^{r} = \mathbf{A}^{r,r} x^{r} + y^{r,r} + \sum_{s \neq r} (\mathbf{A}^{r,s} x^{s} + y^{r,s})$$
$$x^{r}_{i} = \sum_{j} \left(\mathbf{A}^{r,r}_{i,j} x^{r}_{j} + y^{r,r}_{j} \right) + \sum_{s \neq r} \sum_{j} \left(\mathbf{A}^{r,s}_{i,j} x^{s}_{j} + y^{r,s}_{j} \right)$$

- An example of global supply chain:
 - Country: China: 1, Japan: 2, US: 3
 - Sector: crude oil: 1; gasoline: 2; transportation: 3
 - $y^{r,s}$: final demand (consumption)

Multi-Regional Input-Output Analysis

Multi-Regional Input-Output Table (2 regions and n sectors)

	Intermediate use						Final demand		Total	
			Region 1		Region 2			Region 1	Region 2	output
		Sector 1		Sector n	Sector 1		Sector n			
Intermedi ate input	Region 1	z ^{1,1} 1,1		$z_{1,n}^{1,1}$	$z_{1,1}^{1,2}$		z ^{1,2} 1, <i>n</i>	y ₁ ,1	y ₁ ,2	x ₁ ¹
		$z_{n,1}^{1,1}$		$z_{n,n}^{1,1}$	$z_{n,1}^{1,2}$		$z_{n,n}^{1,2}$	$y_n^{1,1}$	$y_{n}^{1,2}$	\mathbf{x}_n^1
	Region 2	z ^{2,1} 1,1		z ^{2,1} 1,n	z ²² z _{1,1}		z ^{2,2} 1,n	y ₁ ^{2,1}	y ₁ ^{2,2}	x ₁ ²
		$z_{n,1}^{2,1}$		$z_{n,n}^{2,1}$	$z_{n,1}^{2,2}$		z ^{2,2}	$y_{n}^{2,1}$	y _n ^{2,2}	x_n^2
Value added		v ₁ ¹		v_n^1	v_1^2		v_n^2			
Total input		x ₁ ¹		\mathbf{x}_n^1	x ₁ ²		x_n^2			

For a total of m regions and n sectors:

$$x_i^r = \sum_{s=1}^m \sum_{j=1}^n z_{i,j}^{r,s} + \sum_{s=1}^m y_i^{r,s} \qquad A_{i,j}^{r,s} = \frac{z_{i,j}^{r,s}}{x_j^s}$$

Multi-Regional Input-Output Analysis of Emissions

$$\boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}^{1} \\ \boldsymbol{x}^{2} \\ \boldsymbol{x}^{3} \\ \vdots \\ \boldsymbol{x}^{m} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{1,1} & \mathbf{A}^{1,2} & \mathbf{A}^{1,3} & \dots & \mathbf{A}^{1,m} \\ \mathbf{A}^{2,1} & \mathbf{A}^{2,2} & \mathbf{A}^{2,3} & \dots & \mathbf{A}^{2,m} \\ \mathbf{A}^{3,1} & \mathbf{A}^{3,2} & \mathbf{A}^{3,3} & \dots & \mathbf{A}^{3,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}^{m,1} & \mathbf{A}^{m,2} & \mathbf{A}^{m,3} & \dots & \mathbf{A}^{m,m} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}^{1} \\ \boldsymbol{x}^{2} \\ \boldsymbol{x}^{3} \\ \vdots \\ \boldsymbol{x}^{m} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\Sigma}_{s} \boldsymbol{y}^{1,s} \\ \boldsymbol{\Sigma}_{s} \boldsymbol{y}^{2,s} \\ \vdots \\ \boldsymbol{\Sigma}_{s} \boldsymbol{y}^{3,s} \\ \vdots \\ \boldsymbol{\Sigma}_{s} \boldsymbol{y}^{m,s} \end{bmatrix}$$

$$= \left(\mathbf{I} - \begin{bmatrix} \mathbf{A}^{1,1} & \mathbf{A}^{1,2} & \mathbf{A}^{1,3} & \dots & \mathbf{A}^{1,m} \\ \mathbf{A}^{2,1} & \mathbf{A}^{2,2} & \mathbf{A}^{2,3} & \dots & \mathbf{A}^{2,m} \\ \mathbf{A}^{3,1} & \mathbf{A}^{3,2} & \mathbf{A}^{3,3} & \dots & \mathbf{A}^{3,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}^{m,1} & \mathbf{A}^{m,2} & \mathbf{A}^{m,3} & \dots & \mathbf{A}^{m,m} \end{bmatrix} \right)^{-1} \times \begin{bmatrix} \boldsymbol{\Sigma}_{s} \boldsymbol{y}^{1,s} \\ \boldsymbol{\Sigma}_{s} \boldsymbol{y}^{2,s} \\ \boldsymbol{\Sigma}_{s} \boldsymbol{y}^{3,s} \\ \vdots \\ \boldsymbol{\Sigma}_{s} \boldsymbol{y}^{m,s} \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} \mathbf{F}^{1} & 0 & 0 & \dots & 0 \\ 0 & \mathbf{F}^{2} & 0 & \dots & 0 \\ 0 & 0 & \mathbf{F}^{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \mathbf{F}^{m} \end{bmatrix} \qquad \qquad \mathbf{F} = \begin{bmatrix} \mathbf{E}^{1} \\ \mathbf{E}^{2} \\ \mathbf{E}^{3} \\ \vdots \\ \mathbf{E}^{m} \end{bmatrix} = \mathbf{F} \times \mathbf{X}$$

Here, x^r , y^r , F^r and E^r are vectors (of sectors), and $A^{r,s}$ is a matrix

Rapid Changes in Trade and Outsourcing

Export, Import and Total GDP of China

Trade Redefines Chinese and U.S. Emissions

Trade increases Chinese emis, but decreases U.S. emis
 Export-to-world contributes 36% of Chinese SO₂ emis in 2006
 Sino-US-trade-related SO₂ emis are 19% of U.S. emis in 2006

Trade Redefines Chinese and U.S. Emissions

China v.s. US: - Higher emis - Higher intensity - Lower emis/person - Net emis due to export

Drivers of China's PM_{2.5} Emission Growth

Structural Decomposition Analysis

Guan et al., 2014, ERL

Total changes

Atmospheric Chemical Transport Modeling

Atmospheric chemical transport models:

 Simulating spatiotemporal variations of trace species after they or their precursors are emitted into the atmosphere

Export of Goods Contributes to China's Sulfate

% contribution of China's export-related pollution to total pollution anywhere in the world in 2006

Sulfate, min=0.0%, max=33.7%

Lin et al., 2014, PNAS

Export of Goods Contributes to China's Pollution

% contribution of China's export-related pollution to total pollution anywhere in the world in 2006

USA Consumption Affects China's Sulfate Pollution

USA imports goods from China versus self-production: (accounting for differences in emission intensity)

- Increase sulfate over China
- Decrease sulfate over E. USA with reduction over W. USA

This is in contrast to traditional view that China reduces USA air quality via atmospheric transport !

USA Consumption Affects China's Pollution

% change in pollution in 2006

Rapid Changes in China's Emissions Embedded in Export

Ni R.-J. dissertation

Rapid Decline in China's Emission Intensity

Ni R.-J. dissertation

China's Cross-Regional Pollution Embedded in Trade

POMINO – Peking U. OMI NO₂ Monthly Animation

Lin et al., ACP, 2014; Lin et al., ACP, 2015; Liu et al., AMT, 2019; Zhang et al., NRSB, 2022 https://www.pku-atmos-acm.org/acmProduct.php

Much stronger NO₂ growth over Northwest, 2005-2013

Cui et al., ACP, 2016

Large Westward Transfer of NOx Emissions via Trade

Zhao et al., ACP, 2015

China's Inter-regional Pollution Transport Via Trade

Zhao et al., ACP, 2015

Regional Contributions to China's Export & Embedded Emissions

各个地区间接出口排放所占的比例

30

Pollution Transfer: Beijing → Hebei

Zhao et al., Applied Energy, 2016

PM & Associated Mortality from China's Export

Export-related PM_{2.5} (CDF)

Export-related deaths

Export-related deaths

v.s.

US death wrt $O_3 = 5,000$

Jiang et al., EST, 2015

Inter-Provincial Disparity in Export-related Deaths

Jiang et al., EST, 2015

Potential Policy-Driven Outsourcing Within China

Regional environmental policy

- Region: Beijing-Tianjin-Hebei (JJJ)
- Target: PM_{2.5} 25% ↓ (reduction)
- Measures:
 - Electricity: 30–70% import
 - Metal: 29–40% 🗸
 - Nonmetal: 36–55% ↓
 - Coal: 13–57% 🕹

Fang et al., Science Advances, 2019

Trade-driven Pollution Transport: A Critical Issue in China's GO-WEST Movement

Pollution in Tenggeli Desert (2014/08/31)

http://baike.baidu.com/view/14786821.htm?fr=aladdin

Shifted Economic Burden of Environmental Taxation Via Inter-Provincial Trade Within China

Global Trade Leads to Complex Emission Transfer

Top ten routes of emissions embedded in trade among 13 regions in 2014

Black carbon

 NO_x

Ammonia

POA

Volatile organic compounds

SO₂

Lin et al., under review

Consumption & Trade Drive Emission Redistribution

Kanemoto et al., 2014, GEC

Trade Redistributes Emissions

Lin et al., 2016, Nature Geoscience

Trade Transfers Emissions from Rich to Poorer Regions

Consumption-based minus Production-based Emissions in 2007

Lin et al., 2016, Nature Geoscience

Transboundary PM_{2.5} Due to Trade-Transport Synergy

Lin et al., under review

Radiative Forcing of Aerosols

IPCC, 2013

Trade Transfers Radiative Forcing: Rich → Poorer Regions

TOA direct radiative forcing of BC in 2007

Lin et al., 2016, Nature Geoscience

Trade Transfers Radiative Forcing: Rich → Poorer Regions

TOA direct RF of scattering aerosols (SO₄+NO₃+NH₄+POA) in 2007

Lin et al., 2016, Nature Geoscience

Aerosol Radiative Forcing Embedded in Trade: From Richer to Poorer Regions

Consumption-based minus production-based TOA direct RF in 2007

Aerosol Radiative Forcing Embedded in Trade: From Richer to Poorer Regions

Percent Difference between consumption- and production-based RF in 2007

What is a region's contribution to climate change ???

Lin et al., 2016, Nature Geoscience

Drivers of Difference Between Consumption- and Production-based Aerosol Radiative Forcing

Effective Radiative Forcing (= ERF_{ari} + ERF_{aci}) of Ec

Lin et al., Nature Geoscience, 2022

Sulfur Emissions from Consumption of Developing and Developing Countries Produce Comparable Climate Impacts

Lin et al., Nature Geoscience, 2022

Sulfur Emissions from Consumption of Developing and Developing Countries Produce Comparable Climate Impacts

Global Mean Effect of Ec

Lin et al., Nature Geoscience, 2022

Transport & Trade are Related to Lots of PM_{2.5} Mortality

Of 3,450,000 PM_{2.5} related deaths in 2007:

- > 410,000 (12%) is due to atmospheric transboundary transport
- 760,000 (22%) is due to consumption in a different region (trade + atmos)
 Of 1,000,000 PM2.5 related deaths in 2007 in China:
- 35,000 (3.5%) is due to atmospheric transboundary transport
- > 240,000 (24%) is due to consumption in a different region (trade + atmos)

Distinctive Changes in Economy & PM_{2.5} Mortality from *Free Trade* to *Current tariff plus an additional 25% tariff*

 With the trade restrictions, regional
 GDP, CO₂ emission and mortality all decrease

Relative reductions of emissions and mortalities are less significant than the reduction in GDP

Developed regions tend to have greater relative reductions in mortality than developing regions

Method: Emissions + GTAP CGE + GEOS-Chem + Satellite + GEMM

Global Concerted Actions to Cut Emission Intensities in Developing Regions to Ensure both Economic Growth & Environmental Protection

Method: Emissions + GTAP CGE + GEOS-Chem + Satellite + GEMM

Inter-regional Environmental Inequality under Lasting Pandemic Exacerbated by Residential Response

Li et al., SOTEN, 2023

Uncertainties in GAP Studies

Lin et al., under review

From Production to Consumption Perspective

- Regionally consistent environmental standards ?
- > Where and how to best invest ? Beijing v.s. Hebei ?

Summary Globalization of Air Pollution

Given the looped mechanism of pollution transport :

- Domestic economic and environmental strategy ?
- International collaboration to reduce pollution transport ?
- Roles of consumers and producers ?

Quiz

- Could trade-associated redistribution of emissions and impacts occur for greenhouse gases? Any differences from transboundary air pollution?
- Any synergy and/or trade-off between transboundary greenhouse gases and air pollution, including impacts and mitigation?
- How can climate change respond and feedback to the transboundary pollution via synergy of trade and transport?
- Roles of industries, sectors and individual consumers in pollution and mitigation
- Challenges in calculating and verifying production-based and consumptionbased pollution. What are the uncertainties due to integration of theory, method and data from multiple disciplines? How can satellite remote sensing improve quantification of trade-related pollution?
- How can AI help assess the transboundary pollution, their impacts and associated uncertainties? Will AI-based Monte Carlo simulations play a role?
- Prospects and challenges of inter-regional (or global) agreement to mitigate transboundary pollution. How can China play a role?
- Should consumption-based pollution accounting be part of environmental policymaking?

How Is Air Pollution Globalized ???

Traditional View

- Production (ind., pow., tra.)
- Emissions
- **Local Pollution**
- Atmos. Transport
- Global Change

Consumption & Trade Drives Production and Pollution !

Consumption & Trade Drives Production and Pollution !

Consumption & trade re-locates pollution from consumers to producers

Globalizing Air Pollution

Atmosphere: Move pollution from producer to consumer Trade : Move Pollution from consumer to producer

Lin et al., 2014, PNAS

Calculating Emissions Embodied in Bilateral Trade of China Based on Bilateral Trade

Lin et al., 2014, PNAS

Export and Total GDP of China

Source: Xujia Jiang

China's Export- and Import-related CO₂ Emissions

Lin et al., 2014, PNAS

Consumption and Trade Drives Emission Redistribution

Kanemoto et al., 2014, GEC

TOA Direct RF of SIOA, POA, and BC

Lin et al., 2016, Nature Geoscience

Trade Transfers RF from Rich to Poorer Regions

Stronger cumulated RF outside than within the source region

 \succ Terrestrial share is much reduced from RF_p to RF_c

Lin et al., 2016, Nature Geoscience

Air Pollutants Exert Strong Radiative Forcing

Based on concentration change

Based on emission change

1 w m⁻² = 32 x world energy consumption in 2013

Trend of Surface NOx and SO2 over China

Export-related emissions contributed more than 50% of pollution growth in China over 2000-2007

Inter-Provincial Disparity in Export-related Sectors

EX-related sectors in inner provinces

 Metals, chemicals and other upstream products as intermediate goods

EX-related sectors in coastal provinces

 Electronics and other downstream (final) products

Zhao et al., 2015, ACP; Jiang et al., EST, 2015

China's Inter-provincial Trade for Export Causes A Large Quantity of Deaths

China's export-related death toll in 2007 = 157,000, larger than all deaths in the US and the UK from ambient PM and O_3

Jiang et al., EST, 2015
Inter-Provincial Disparity in Export-related Emissions

Zhao et al., 2015, ACP; Jiang et al., EST, 2015

Trade Transfers Emissions from Rich to Poorer Regions

Consumption-based minus Production-based Emissions in 2007

Lin et al., 2016, Nature Geoscience

Transport and Trade are Related to Large Deaths

Zhang et al., 2017, Nature

Trade Transfers RF from Rich to Poorer Regions

A region's RF is largely due to emissions in other regions A region's RF_c is much more spreaded spatially than RF_p

		-73	-51	-39	-15	-20	-7	-6	-16	-34	-28	-294		
Source Region	East Asia		22.6%	24.3%	9.1%	5.7%	40.3%	29.0%	4.4%	2.2%	2.3%	28.9%	-174	
	Economies in Transition	3.3%	36.7%	3.6%	11.1%	8.7%	0.4%	1.6%	0.3%	1.5%	2.9%	4.5%	-41	%
	North America	0.6%	3.4%	47.5%	4.6%	2.0%	0.1%	0.5%	2.5%	0.3%	0.5%	5.8%	-40	100
	Western Europe	0.6%	10.7%	1.2%	59.3%	7.2%	0.1%	0.5%	0.2%	0.2%	2.6%	4.3%	-30	
	Middle East and North Africa	2.9%	13.8%	3.5%	5.3%	56.5%	1.1%	1.5%	1.0%	6.7%	20.4%	7.6%	-53	80
	South-East Asia and Pacific	1.1%	0.5%	0.9%	0.5%	0.9%	36.7%	3.3%	1.6%	0.6%	1.3%	3.7%	-16	60
	Pacific OECD	0.3%	0.3%	0.3%	0.1%	0.0%	0.4%	37.8%	0.4%	0.0%	0.1%	3.0%	-12	00
	Latin America and Caribbean	0.4%	0.8%	3.8%	1.0%	1.4%	0.5%	6.3%	77.5%	0.4%	2.4%	9.6%	-44	45
	South Asia	10.4%	10.4%	14.1%	8.3%	14.0%	19.2%	7.8%	7.0%		8.7%	22.9%	-125	
	Sub-Saharan Africa	0.5%	0.7%	0.9%	0.7%	3.5%	1.3%	11.7%	5.0%	0.9%	58.9%	9.7%	-49	30
Percentage RF _c of SIOA+POA													20	
		-72	-51	-40	-16	-20	-7	-6	-16	-35	-28	-300		
Source Region	East Asia	62.2%	18.7%	19.6%	7.7%	5.9%	31.9%	25.5%	5.9%	2.7%	3.9%	23.5%	-142	12
	Economies in Transition	3.4%	26.8%	3.1%	9.9%	7.1%	1.0%	2.2%	1.2%	1.3%	2.7%	4.0%	-34	_
	North America	5.9%	6.7%	43.5%	6.7%	4.8%	5.0%	6.1%	9.9%	2.5%	3.8%	9.6%	-60	/
	Western Europe	6.2%	17.3%	5.7%	56.2%	13.2%	5.4%	7.7%	7.6%	3.6%	9.4%	9.7%	-62	. 3
	Middle East and North Africa	3.9%	13.6%	4.3%	6.0%	45.7%	2.6%	4.1%	2.9%	6.8%	17.1%	7.8%	-53	
	South-East Asia and Pacific	1.9%	1.1%	1.4%	0.9%	1.3%	29.1%	4.9%	2.1%	1.0%	1.8%	3.9%	-18	1
	Pacific OECD	3.8%	2.4%	2.7%	1.5%	2.0%	3.5%	26.0%	2.3%	1.0%	2.2%	4.3%	-22	
	Latin America and Caribbean	1.2%	1.6%	4.7%	1.7%	1.9%	1.2%	5.0%	56.0%	0.7%	2.4%	7.4%	-37	0 🗆
	South Asia	10.4%	10.6%	13.6%	8.1%	14.3%	18.4%	9.4%	7.3%		9.4%	21.8%	-121	
	Sub-Saharan Africa	1.0%	1.2%	1.2%	1.1%	3.9%	1.8%	9.1%	4.8%	1.4%	47.2%	7.9%	-42	
		East Asia	Economies in Transition	North America	Western Europe	Middle East and North Africa	South-East Asia and Pacific	Pacific OECD	Latin America and Caribbean	South Asia	Sub-Saharan Africa	Rest of World	-	

Percentage RFp of SIOA+POA

Lin et al., 2016, Nature Geoscience

Recption Region

Trade Transfers RF from Rich to Poorer Regions

A region's RF is largely due to emissions in other regions A region's RF_c is much more spreaded spatially than RF_p

Percentage RFp of BC															
		44	24	15	5	31	6	3	10	31	39	117			
Source Region	East Asia	78.4%	28.1%	33.3%	11.5%	5.8%	27.6%	27.3%	3.7%	1.8%	2.3%	27.5%	85		
	Economies in Transition	1.4%	23.2%	2.5%	6.1%	3.5%	0.1%	0.6%	0.1%	0.5%	1.1%	2.2%	11		%
	North America	0.4%	2.7%	30.5%	3.3%	1.3%	0.0%	0.3%	1.4%	0.1%	0.4%	2.9%	10		100
	Western Europe	0.7%	13.0%	2.3%	59.9%	8.2%	0.0%	0.5%	0.1%	0.2%	3.1%	3.3%	15		
	Middle East and North Africa	2.7%	15.8%	4.9%	6.3%	52.7%	0.5%	1.7%	0.7%	3.8%	15.8%	6.0%	37		80
	South-East Asia and Pacific	2.0%	1.5%	2.6%	1.3%	1.8%	48.7%	11.4%	3.3%	1.0%	2.0%	8.7%	17		60
	Pacific OECD	0.4%	0.8%	1.0%	0.3%	0.1%	0.2%	25.0%	0.2%	0.0%	0.0%	2.0%	4		00
	Latin America and Caribbean	0.4%	1.3%	4.4%	1.4%	1.6%	0.4%	8.1%	76.8%	0.3%	1.8%	10.3%	23		45
	South Asia	12.6%	11.3%	16.3%	8.2%	15.8%	21.0%	8.8%	6.2%	90.9%	8.8%	22.8%	76		
	Sub-Saharan Africa	0.9%	2.2%	2.2%	1.8%	9.2%	1.4%	16.4%	7.4%	1.4%	64.6%	14.4%	48		30
Percentage RF _c of BC														20	
		43	24	15	5	31	6	3	10	31	39	117			
Source Region	East Asia	69.4%	25.7%	30.0%	10.6%	6.1%	25.6%	25.4%	4.7%	1.9%	2.7%	24.9%	77	-	12
	Economies in Transition	1.6%	18.8%	2.4%	6.0%	3.6%	0.5%	1.0%	0.8%	0.5%	1.3%	2.2%	10		
	North America	3.2%	5.0%	28.9%	5.1%	4.6%	3.1%	3.2%	4.8%	1.2%	2.1%	5.0%	17		7
	Western Europe	3.7%	17.0%	5.5%	57.2%	13.6%	3.9%	4.4%	4.3%	1.8%	6.1%	6.4%	25		3
	Middle East and North Africa	3.0%	14.0%	4.8%	6.2%	41.3%	1.3%	2.4%	1.8%	3.6%	12.6%	5.5%	31		
	South-East Asia and Pacific	2.2%	1.7%	2.6%	1.5%	2.0%	40.1%	10.6%	3.2%	1.1%	1.9%	7.7%	15		1
	Pacific OECD	2.1%	2.1%	2.4%	1.3%	1.7%	2.2%	21.1%	1.3%	0.4%	0.8%	2.9%	7		
	Latin America and Caribbean	0.9%	1.8%	5.0%	1.8%	2.1%	0.9%	7.3%	65.2%	0.5%	1.9%	9.3%	21	L	0
	South Asia	12.7%	11.4%	16.0%	8.2%	15.7%	20.6%	9.2%	6.3%	87.4%	8.7%	22.2%	74		
	Sub-Saharan Africa	1.2%	2.5%	2.5%	2.1%	9.3%	1.9%	15.3%	7.6%	1.6%	62.0%	13.8%	47		
		East Asia	Economies in Transition	North America	Western Europe	Middle East and North Africa	South-East Asia and Pacific	Pacific OECD	Latin America and Caribbean	South Asia	Sub-Saharan Africa	Rest of World			

Lin et al., 2016, Nature Geoscience

Recption Region

Trade Transfers RF from Rich to Poorer Regions

Developed regions: RF_c is higher than RF_p by 50–100%
Developing regions: RF_c is smaller than RF_p

What is a region's contribution to climate change ???

Lin et al., 2016, Nature Geoscience

Transport and Trade are Related to Large Deaths

Total 276,260 994,133 101,444 173,692 463,391 196,412 76,231 76,875 77,760 50,218 20,229 deaths 8,119 а 2 China 96.5 3.2 0.7 0.9 2.2 2.0 0.5 0.2 0.1 1,023,689 0.9 0.8 Rest of 0.0 0.1 0.1 0.1 0.2 0.2 0.0 0.0 0.0 1.0 55.5 0.2 0.1 53,224 East Asia 0.1 0.1 0.1 0.3 0.1 0.1 0.1 1.2 0.0 471,484 Region where pollution was produced India 0.2 85.5 0.1 26.3 Rest of 236,467 0.9 0.6 11.6 60.5 4.3 0.1 0.3 1.4 0.2 0.3 0.1 0.4 0.1 Asia Russia 0.5 0.0 0.6 60.2 0.7 1.9 0.3 0.6 0.0 0.0 0.0 80,949 1.4 4.8 W. Europe 0.2 0.0 0.1 0.4 0.0 0.0 211,639 0.4 85.4 8.3 0.2 0.4 6.5 24.1 0.1 0.3 66.1 8.3 0.2 0.3 0.0 0.0 177,205 E. Europe 0.4 0.1 20.7 9.8 0.4 0.3 0.6 1.7 4.0 3.9 1.4 2.6 77.7 0.4 0.5 0.1 0.0 95,433 Middle East + 4.7 U.S. 0.3 0.4 0.1 0.2 0.8 1.3 1.0 0.8 88.9 1.9 0.1 0.0 83,808 10,090 Canada 0.0 0.1 0.0 0.0 0.1 0.2 0.2 0.1 6.2 48.2 0.1 0.0 0.0 Latin America 0.1 0.1 0.1 1.0 0.1 96.6 0.9 50,627 0.0 0.0 0.1 0.1 0.1 0.1 Sub-Saharan 19,899 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.3 92.5 1.4 Africa Rest of 971 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.5 World Sub-Saharan Africa Rest of World China Rest of ast Asia Rest of Asia Russia Europe East + Canada India U.S. America E. Europe Middle ×. -atin

Production Perspective

Region where deaths occurred

Consumption Perspective

Region where deaths occurred

Zhang et al., 2017, Nature

Transport and Trade are Related to Large Deaths

Local as "source"

Local as "receptor"

Zhang et al., 2017, Nature