Chapter 8

Economic Globalization, Trade and Pollution Transfer

Atmospheric Transport of Chinese Pollution

Yu et al., 2012, Science:

■ E. Asian anthropogenic PM causes 6% of N.A. DRE

Cooper et al., 2010, Nature:

 Air transported from Asia to W. US contains greatest increasing O₃

Verstraeten et al., 2015, Nat. Geos.:

Rising Chinese emissions offset
 43% of FT O₃ reduction over W. US.

Atmospheric PM_{2.5} Transport Affects Beijing

Sources of Beijing's PM_{2.5} (北京市环保局, 2014)

Sources of Beijing's PM_{2.5} (北京市环保局, 2018)

区域输送贡献:

- ▶ 年平均: 26%-42%
- ▶ 中度污染(115-150 μg/m³): 34%-50%
- ▶ 重污染日(>150 μg/m³):55%-75%

Globalizing Air Pollution via Atmospheric Transport, Economic Trade and Their Synergy

Lin JT et al., PNAS 2014; Lin JT et al., Nature Geoscience 2016 Zhang Q et al., Nature 2017; Lin JT et al., Nature Comm. 2019 Wang JX et al., Science Bulletin, 2019; Lin JT et al., Nature Geoscience, 2022 Chen LL et al., Science Bulletin, 2022; Xu JW et al., ACP, 2023, Highlight Paper Kong H et al., Nature Geoscience, accepted; Lin JT et al., NREE, under review

Synergistic Effects of Trade and Atmospheric Transport

Lin et al., in prep

An Interdisciplinary Approach to Calculating Globalizing Air Pollution

Lin et al., in prep

Emissions Associated with Production, Consumption & Trade

Production, Final Consumption, Intermediate Consumption

Structure Path Analysis

$$X = \underline{Y} + \underline{AY} + \underline{A^{2}Y} + \underline{A^{3}Y} + \underline{A^{4}Y} + \underline{A^{5}Y} + \dots$$

$$= (I + A + A^{2} + A^{3} + A^{4} + A^{5} + \dots)Y$$

$$= (I - A)^{-1}Y$$

1, 2, 3, 4, ... are # of transactions along the supply chains (Layers/Tiers)

$$X = (\mathbf{I} - \mathbf{A})^{-1} Y$$

Input-Output Analysis Based on Bilateral Trade

Single Region Input-Output Table

	Intermediate use			Fin	al dema	nd	Export	Import	Total
	Sector 1	•••••	Sector n	Sector 1		Sector m	Ελροιτ	Import	output
Intermediate input	z ₁₁		z _{1n}	C ₁₁		C _{1m}	e_1	m_1	X ₁
	Z _{n1}		Z _{nn}	C _{n1}		C _{nm}	e _n	m _n	X _n
Value added	v ₁		v _n						
Total inputs	X ₁	•••••	x _n						

$$a_{ij} = z_{ij}/x_{j}$$

$$z = \mathbf{A}X$$

$$\mathbf{Z} = \mathbf{A}X$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X + \mathbf{C} + \mathbf{E} - \mathbf{M}$$

$$\mathbf{Z} = \mathbf{A}X$$

Input-Output Analysis Based on Bilateral Trade

Direct requirement coefficient matrix: $A = A^d + A^m$

Final demand: $C = C^{d} + C^{m}$

Import: $M = A^{m}X + C^{m}$

Thus:

$$X = AX + C + E - M$$

$$= (A^{d} + A^{m})X + (C^{d} + C^{m}) + E - M$$

$$= A^{d}X + C^{d} + E$$

$$= (I - A^{d})^{-1}C^{d} + (I - A^{d})^{-1}E$$

Domestic output for domestic cons.

Domestic output for export

Calculating Emissions Embodied in Exports Based on Bilateral Trade

Emissions embedded in export:

$$EEE = \mathbf{F} \cdot \mathbf{X}^{\mathbf{e}}$$

Total emissions:

$$P = F \cdot X$$

Total output:

X

Total output for export (based on IOA):

$$X^e = \left(\mathbf{I} - \mathbf{A}^{\mathrm{d}}\right)^{-1} E$$

Emission intensity:

F where
$$F_i = \frac{P_i}{X_i}$$

Domestic direct requirement coefficient matrix:

$$\mathbf{A}^{\mathrm{d}}$$

Emissions Embodied in Bilateral Trade

Emissions embedded in export:

$$EEE = \mathbf{F} \cdot \mathbf{X}^e = \mathbf{F} \cdot (\mathbf{I} - \mathbf{A}^d)^{-1} \mathbf{E}$$

Emissions avoided by import:

$$EAI = \mathbf{F} \cdot \mathbf{X}^{\mathbf{m}} = \mathbf{F} \cdot \left(\mathbf{I} - \mathbf{A}^{\mathrm{d}}\right)^{-1} \mathbf{M}$$

Emissions embedded in import:

$$EEI = EAI \cdot \frac{(CO_2/GDP)_i}{(CO_2/GDP)_0}$$

Emissions embedded in net trade:

$$EET = EEE - EEI$$

Multi-Regional Input-Output Analysis

A bigger matrix to describe global supply chain

$$\begin{pmatrix} \mathbf{x}^{1} \\ \mathbf{x}^{2} \\ \mathbf{x}^{3} \\ \vdots \\ \mathbf{x}^{m} \end{pmatrix} = \begin{pmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} & \mathbf{A}^{13} & \dots & \mathbf{A}^{1m} \\ \mathbf{A}^{21} & \mathbf{A}^{22} & \mathbf{A}^{23} & \dots & \mathbf{A}^{2m} \\ \mathbf{A}^{31} & \mathbf{A}^{32} & \mathbf{A}^{33} & \dots & \mathbf{A}^{3m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}^{m1} & \mathbf{A}^{m2} & \mathbf{A}^{m3} & \dots & \mathbf{A}^{mm} \end{pmatrix} \begin{pmatrix} \mathbf{x}^{1} \\ \mathbf{x}^{2} \\ \mathbf{x}^{3} \\ \vdots \\ \mathbf{x}^{m} \end{pmatrix} + \begin{pmatrix} \sum_{s} \mathbf{y}^{1s} \\ \sum_{s} \mathbf{y}^{2s} \\ \sum_{s} \mathbf{y}^{3s} \\ \vdots \\ \sum_{s} \mathbf{y}^{ms} \end{pmatrix}$$

$$x^r = A^m x^r + y^m + \sum_{s \neq r} A^{rs} x^s + \sum_{s \neq r} y^{rs}$$

- Example:
- Country: China: 1, Japan: 2, US: 3
- Sector: crude oil: 1; gasoline: 2; transportation: 3
- y^{rs}: final demand (consumption)

Multi-Regional Input-Output Analysis

Multi-Regional Input-Output Table

		Intermediate use						Final demand		Total
			Region 1			Region 2		Region 1	Region 2	output
		Sector 1		Sector n	Sector 1		Sector n			
Intermedi ate input	Region 1	Z ₁₁		z_{1n}^{11}	z_{11}^{12}		z_{1n}^{12}	y ₁ 11	y ₁ ¹²	x_1^1
		z_{n1}^{11}		$\mathbf{z}_{n\mathbf{n}}^{11}$	\mathbf{z}_{n1}^{12}		z ₁₁ ¹²	y_n^{11}	y_n^{12}	\mathbf{x}_n^1
	Region 2	z_{11}^{21}		z_{11}^{21}	z ₁₁ ²²		z _{1n} ²²	y ₁ ²¹	y ₁ ²²	x ₁ ²
		z _{n1} ²¹		z_{n1}^{21}	z _{n 1}		z _{nn} ²²	y_n^{21}	y_n^{22}	x_n^2
Value added		v_1^1		v_n^1	v_1^2		v_n^2			
Total input		x ₁ ¹		\mathbf{x}_n^1	x ₁ ²		x_n^2			

$$x_i^R = \sum_{S=1}^m \sum_{j=1}^n z_{ij}^{RS} + \sum_{S=1}^m y_i^{RS}$$
 $A_{ij}^{RS} = z_{ij}^{RS}/x_j^S$

Multi-Regional Input-Output Analysis of Emissions

$$x^r = \sum_{s=0}^{m} z^{rs} + \sum_{s=0}^{m} y^{rs} \qquad A^{rs} = z^{rs}/x^s \qquad (1)$$

Regions and sectors lumped

$$\begin{pmatrix} x^{1} \\ x^{2} \\ \vdots \\ x^{m} \end{pmatrix} = \begin{pmatrix} A^{11} & A^{12} & \cdots & A^{1m} \\ A^{21} & A^{22} & \cdots & A^{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A^{m1} & A^{m2} & \cdots & A^{mm} \end{pmatrix} \begin{pmatrix} x^{1} \\ x^{2} \\ \vdots \\ x^{m} \end{pmatrix} + \begin{pmatrix} \sum_{s} y^{1s} \\ \sum_{s} y^{2s} \\ \vdots \\ \sum_{s} y^{ms} \end{pmatrix}$$
(2)

$$E = F \times \begin{pmatrix} x^{1} \\ x^{2} \\ \vdots \\ x^{m} \end{pmatrix} = \begin{pmatrix} F^{1} & 0 & \cdots & 0 \\ 0 & F^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & F^{m} \end{pmatrix} \times \begin{bmatrix} I - \begin{pmatrix} A^{11} & A^{12} & \cdots & A^{1m} \\ A^{21} & A^{22} & \cdots & A^{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A^{m1} & A^{m2} & \cdots & A^{mm} \end{bmatrix}^{-1} \begin{pmatrix} \sum_{s} y^{1s} \\ \sum_{s} y^{2s} \\ \sum_{s} y^{ms} \end{pmatrix}$$
(4)

Rapid Changes in Trade and Outsourcing

Data source: World Bank

Export and Total GDP of China

Trade Redefines Chinese and U.S. Emissions

- > Trade increases Chinese emis, but decreases U.S. emis
- > Export-to-world contributes 36% of Chinese SO₂ emis in 2006
- > Sino-US-trade-related SO₂ emis are 19% of U.S. emis in 2006

Trade Redefines Chinese and U.S. Emissions

China v.s. US:

- -Higher emis
- -Higher intensity
- Loweremis/person
- Net emis due to exports

Lin et al., 2014, PNAS

Decomposed Drivers of China's PM_{2.5} Emission Growth

Atmospheric Chemical Transport Modeling

$$\frac{\partial C}{\partial t} = E - D - \nabla \cdot CV - \nabla \cdot \overline{C'V'} + (P - L)$$
Grid-resolved Unresolved

Atmospheric chemical transport models:

 Simulating spatiotemporal variations of trace species after they or their precursors are emitted into the atmosphere

Goods Export Contributes ~ 30% of China's Sulfate

% contribution of China's export-related pollution to total pollution anywhere in the world

Export of Goods Contributes to China's Pollution

% contribution of China's export-related pollution to total pollution anywhere in the world

USA Consumption Affects China's Sulfate Pollution

% change in sulfate

USA imports goods from China versus self-production: (accounting for differences in emission intensity)

- Increase sulfate over China
- Decrease sulfate over E. USA with reduction over W. USA

This is in contrast to traditional view that China reduces USA air quality via atmospheric transport!

USA Consumption Affects China's Pollution

Rapid Changes in China's Emissions Embedded in Export

Ni et al., in prep

Rapid Decline in China's Emission Intensity

China's Cross-regional Pollution Embedded in Trade

POMINO – Peking U. OMI NO₂ Monthly Animation

Lin et al., ACP, 2014; Lin et al., ACP, 2015; Liu et al., AMT, 2019; Zhang et al., NRSB, 2022 www.phy.pku.edu.cn/~acm/acmProduct.html#POMINO

Much stronger NO₂ growth over Northwest, 2005-2013

Cui et al., ACP, 2016

Large Westward Transfer of NOx Emissions via Trade

Zhao et al., ACP, 2015

China's Inter-regional Pollution Transport Via Trade

2015年中国各个地区对出口相关排放的贡献

Pollution Transfer: Beijing → Hebei

PM & Mortality from China's Inter-provincial Trade

Export-related PM_{2.5} (CDF)

Export-related deaths

v.s.
US death wrt O₃ = 5,000

Inter-Provincial Disparity in Export-related Deaths

Potential Policy-Driven Outsourcing Within China

Regional environmental policy

- Region: Beijing-Tianjin-Hebei (JJJ)
- Target: PM_{2.5} 25% ↓ (reduction)
- Measures:
 - Electricity: 30-70% import
 - Metal: 29–40% ↓
 - Nonmetal: 36–55% ↓
 - Coal: 13-57% ↓

Fang et al., Science Advances, 2019

Shifted Economic Burden of Environmental Taxation Via Trade Within China

Wang et al., 2019 Science Bulletin

Method:

Emission inventory

- + Input-output table
- + Urban consumption
- + Official tax rates

Trade-driven Pollution Transport: A Critical Issue in China's GO-WEST Movement

Pollution in Tenggeli Desert (2014/08/31)

Global Trade Leads to Complex Emission Transfer

CO₂ emission transfer via trade

Davis and Caldaria, 2010, PNAS

Consumption and Trade Drives Emission Redistribution

Kanemoto et al., 2014, GEC

Trade Transfers Emissions from Rich to Poorer Regions

Consumption-based minus Production-based Emissions in 2007

Trade Redistributes Emissions

Lin et al., 2016, Nature Geoscience

PM_{2.5} Pollution Embedded in Trade: Rich → Poorer Regions

Consumption-based minus production-based PM in 2007

Lin et al., 2016, Nature Geoscience

Radiative Forcing of Aerosols

IPCC, 2013

TOA direct RF of BC in 2007

Lin et al., 2016, Nature Geoscience

TOA direct RF of SO₄+NO₃+NH₄+POA in 2007

Aerosol Radiative Forcing Embedded in Trade: Rich → Poorer Regions

Consumption-based minus production-based TOA direct RF in 2007

Aerosol Radiative Forcing Embedded in Trade: From Richer to Poorer Regions

Percent Difference between consumption- and production-based RF in 2007

Method: Emission inventory + GTAP MRIO table + GEOSChem + RRTMG

What is a region's contribution to climate change ???

Lin et al., 2016, Nature Geoscience

Drivers of Difference Between Consumption- and Production-based Aerosol Radiative Forcing

Sulfur Emissions from Consumption of Developing and Developing Countries Produce Comparable Climate Impacts

Lin et al., Nature Geoscience, 2022

Effective Radiative Forcing of Ec

Sulfur Emissions from Consumption of Developing and Developing Countries Produce Comparable Climate Impacts

Global Mean Effect of Ec

Global Transport and Trade Result In Large PM_{2.5} Mortality

Of 3,450,000 PM_{2.5} related deaths in 2007 globally:

- > 12% is due to atmospheric transboundary transport
- 22% is due to consumption in a different region (trade + transport)

Of 1,000,000 PM_{2.5} related deaths in 2007 in China:

- 3.5% is due to atmospheric transboundary transport
- 24% is due to consumption in a different region (trade + transport)

How Would Trade Development Affect Environment: Δ GDP and Δ PM_{2.5} Mortality from <u>Free Trade</u> to +25% tariff

- With the trade
 restrictions, regional
 GDP, CO₂ emission and
 mortality all decrease.
- Relative reductions of emissions and mortalities are less significant than the reduction in GDP.
- Developed regions tend to have greater relative reductions in mortality than developing regions.

Lin et al., Nature Communications, 2019

Global Concerted Actions to Cut Emission Intensities in Developing Regions to Ensure both Economic Growth & Environmental Protection

Method: Emissions + GTAP CGE + GEOS-Chem + Satellite + GEMM

Inter-regional Environmental Inequality under Lasting Pandemic Exacerbated by Residential Response

Li et al., SOTEN, 2023

Uncertainties in GAP Studies

From Production to Consumption Perspective

- Socioeconomic-environmental integration
- Regionally consistent environmental standards?
- Where and how to best invest? Beijing v.s. Hebei?

Summary Globalization of Air Pollution

Given the looped mechanism of pollution transport:

- Domestic economic and environmental strategy?
- International collaboration to reduce pollution transport?
- Roles of consumers and producers ?

Quiz

- Challenges in calculating and verifying productionbased emissions and consumption-based emissions.
 And solutions?
- Uncertainties due to integration of multiple disciplines
- Roles of industries, sectors and individual consumers in pollution and mitigation

How Is Air Pollution Globalized ???

Traditional View

Consumption & Trade Drives Production and Pollution!

Consumption & Trade Drives Production and Pollution!

Consumption & trade re-locates pollution from consumers to producers

Globalizing Air Pollution

- > Atmosphere: Move pollution from producer to consumer
- > Trade : Move Pollution from consumer to producer

Lin et al., 2014, PNAS

Calculating Emissions Embodied in Bilateral Trade of China Based on Bilateral Trade

Export and Total GDP of China

Source: Xujia Jiang

China's Export- and Import-related CO₂ Emissions

Lin et al., 2014, PNAS

Consumption and Trade Drives Emission Redistribution

TOA Direct RF of SIOA, POA, and BC

- > Stronger cumulated RF outside than within the source region
- > Terrestrial share is much reduced from RF_p to RF_c

Air Pollutants Exert Strong Radiative Forcing

Based on concentration change

Radiative forcing of climate between 1750 and 2011

Based on emission change

1 w m^{-2} = 32 x world energy consumption in 2013

Trend of Surface NOx and SO2 over China

Export-related emissions contributed more than 50% of pollution growth in China over 2000-2007

Inter-Provincial Disparity in Export-related Sectors

EX-related sectors in inner provinces

Metals, chemicals and other upstream products as intermediate goods

EX-related sectors in coastal provinces

Electronics and other downstream (final) products

China's Inter-provincial Trade for Export Causes A Large Quantity of Deaths

China's export-related death toll in 2007 = 157,000, larger than all deaths in the US and the UK from ambient PM and O_3

Inter-Provincial Disparity in Export-related Emissions

Zhao et al., 2015, ACP; Jiang et al., EST, 2015

Trade Transfers Emissions from Rich to Poorer Regions

Consumption-based minus Production-based Emissions in 2007

Lin et al., 2016, Nature Geoscience

Transport and Trade are Related to Large Deaths

- > A region's RF is largely due to emissions in other regions
- > A region's RF_c is much more spreaded spatially than RF_p

- > A region's RF is largely due to emissions in other regions
- > A region's RF_c is much more spreaded spatially than RF_p

- \triangleright Developed regions: RF_c is higher than RF_p by 50–100%
- Developing regions: RF_c is smaller than RF_p

What is a region's contribution to climate change ???

Transport and Trade are Related to Large Deaths

Production Perspective

			•	•			•	•	•	•	-					
a	0		994,133	76,231	463,391	276,260	101,444	173,692	196,412	76,875	77,760	8,119	50,218	20,229	721	Total deaths
Region where pollution was produced		China	96.5	40.5	0.9	7.7	3.2	0.8	0.7	0.9	2.2	2.0	0.5	0.2	0.1	1,023,689
		Rest of East Asia	1.0	55.5	0.0	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.0	0.0	0.0	53,224
	ged	India	0.2	0.1	85.5	26.3	0.1	0.1	0.1	0.3	0.1	0.1	0.1	1.2	0.0	471,484
	npo	Rest of Asia	0.9	0.6	11.6	60.5	4.3	0.1	0.3	1.4	0.2	0.3	0.1	0.4	0.1	236,467
	as pr	Russia	0.5	1.4	0.0	0.6	60.2	0.7	4.8	1.9	0.3	0.6	0.0	0.0	0.0	80,949
	N UC	W. Europe	0.2	0.4	0.0	0.1	6.5	85.4	24.1	8.3	0.2	0.4	0.0	0.4	0.0	211,639
	Ĕ	E. Europe	0.1	0.4	0.1	0.3	20.7	9.8	66.1	8.3	0.2	0.3	0.0	0.4	0.0	177,205
	e bo	Middle East +	0.3	0.6	1.7	4.0	3.9	1.4	2.6	77.7	0.4	0.5	0.1	4.7	0.0	95,433
	gion whe	U.S.	0.3	0.4	0.1	0.2	0.8	1.3	1.0	0.8	88.9	47.2	1.9	0.1	0.0	83,808
		Canada	0.0	0.1	0.0	0.0	0.1	0.2	0.2	0.1	6.2	48.2	0.1	0.0	0.0	10,090
	Ş.	Latin America	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	1.0	0.1	96.6	0.1	0.9	50,627
		Sub-Saharan Africa	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.3	92.5	1.4	19,899
		Rest of World	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	97.5	971
			China	Rest of East Asia	India	Rest of Asia	Russia	W. Europe	E. Europe	Middle East +	U.S.	Canada	Latin America	Sub-Saharan Africa	Rest of World	+

Region where deaths occurred

Consumption Perspective

Region where deaths occurred

Transport and Trade are Related to Large Deaths

Local as "source"

Local as "receptor"

Zhang et al., 2017, Nature