CHAPTER 10

LOOKING BEYOND: SUSTAINABLE DEVELOPMENT, RENEWABLE ENERGY, AND GEOENGINEERING

World's Environmental Challenges

- > Climate change
- > Air pollution
- 'Ozone hole'
- Water pollution
- Water shortage
- Solid pollution
- Excess nitrogen
- **>** Biodiversity
- **>**

Steffen et al., Science, 2015

"Nexus" of these problems

Synergistic versus trade-off

Planetary Boundaries

9 boundaries assessed, 6 crossed

https://www.stockholmresilience.org/research/planetary-boundaries.html

United Nations Sustainable Development Goals

Environment in a Broader Context

China's Energy Challenges

- National security
- Economic bottleneck
 - Energy shortage drives economic crisis throughout the world's history
 - China is short of liquid and gaseous fossil fuels
 - The reliance on coal is faced with great challenges,
 especially in the coming future
- Climate change and air pollution
 - Fossil fuels do no good for both issues
- Renewables are relatively expensive, but are our future

Science For Concerted Action Towards Sustainability

Science and Policy Making

Our Environmental Dilemma: Global Solution(s) Needed

- Climate change: GHGs (warming), aerosols (cooling)
- > Air pollution: ozone, aerosols, etc.

Dilemma (trade-off):

- Environment versus economy
- For air quality: aerosols \downarrow → radiative forcing \uparrow → climate warming
- For regional ozone air quality: NOx \downarrow → urban ozone air quality \downarrow
- For urban aerosol air quality: VOC $\downarrow \rightarrow$ regional ozone air quality ?
- For climate: aerosols $\uparrow \rightarrow$ air quality \downarrow
- For climate: BC $\downarrow \rightarrow$ OC, SO₄ $\downarrow \rightarrow$ climate?
- Environmental Kuznets Curve
- Pollution Heaven Hypothesis

Our Environmental and Energy Solutions

- Sustainable development: reduce all pollutants
- Resource & energy conservation: rely on everybody!
 - Consumption-based perspective
- Energy efficiency: decrease energy per unit of GDP
- Emission reduction
 - Regulation and policy
 - Enhance standard, penalty, and enforcement
 - Administrative versus market-based policy
 - Carbon trade versus carbon tax
 - Power, industry (?), transportation, residential (?), agr. (?)
 - Technology
 - CCUS (carbon capture, utilization, and storage)?
 - BECCS (bioenergy + CCS)?
- Renewable energy: a plausible solution
 - Hydro, wind, solar, biofuel, tidal, etc.

碳中和: 中国排放约束

碳中和事关环境、科技、经济、国际合作 但是,碳中和的内涵是什么?

2015年巴黎协议:提出2℃温升目标,争取做到1.5℃温升

2015年中国NDC: - CO₂排放于2030年左右达峰(争取提前)

- 单位GDP的CO2排放比2005年下降60-65%

- 非化石能源占一次能源消费比重达到20%左右

- 森林蓄积量比2005 年增加45 亿立方米左右

- 到2020 年天然气占一次能源消费比重达到10%以上

2018年10月: IPCC 1.5℃温升特别报告

2020年9月22日: 2030年前实现CO₂排放达峰,2060年之前碳中和

2021年4月: 中美应对气候危机联合声明

2021年11月: 中美格拉斯哥联合宣言:中方争取在21世纪20年代取

得控制和减少甲烷排放的显著效果

Carbon Neutrality?

Status of net-zero carbon emissions targets

The inclusion criteria for net-zero commitments may vary from country to country. For example, the inclusion of international aviation emissions; or the acceptance of carbon offsets. To see the year for which countries have pledged to achieve net-zero, hover over the country in the interactive version of this chart.

Data source: Energy and Climate Intelligence Unit, Data-Driven EnviroLab, NewClimate Institute, Oxford Net Zero - Net Zero Tracker (2023)

 $\underline{\text{OurWorldInData.org/co2-and-greenhouse-gas-emissions}} \mid \underline{\text{CC BY}}$

碳中和: 中国重要机遇

碳中和事关环境、科技、经济、国际合作 但是,碳中和的内涵是什么?

社会: 能源清洁化+终端电气化+可持续消费

经济: 弱国 → 大国 → 强国

科技: 跟跑 → 并跑 → 领跑

环境: 引领生态环境保护和治理

国际合作:人类命运共同体(可持续发展)

中国碳排放情景和碳中和路径

来源:清华大学气变院

来源:姜克隽

碳中和措施

策略	措施	能源安 全影响	科技影 响	经济影响	气候影 响	环境影 响	其他制 约因素
改善能源 供给	减少化石燃 料使用				+	+	
	发展风能	+	+	短期 - 长期 +	+	+	储能、电 网
	发展太阳能	+	++	短期 - 长期 +	+	+	储能、电 网
	发展水电	+		+	+	?	规模
	发展核能	+	+	?	+	?	潜在风险
减少排放	ccs, ccus	+	+	?	短期 + 长期 ?	短期 + 长期 ?	潜在风险、 可持续性
	BECCS	+	+	?	短期 + 长期 ?	短期 + 长期 ?	潜在风险、 可持续性
增加碳汇	植树造林			+	+	+?	
减少能源 需求	可持续消费	+	+	短期 - 长期 +	+	+	平等性

未来能源发展

经济领导、科技领先、环保领军、国际领袖

Future of Energy

Economic costs of solar/wind electricity are close to coal-based electricity

Potential Solutions to China's and World's Environmental Issues

- Energy: From fossil fuel to renewables
- Societal energy use: Electrification
- Individuals: Sustainable consumption
- Inter-regional cooperation: Financial and technological
- Carbon / environmental tax ?

各地区碳减排成本与潜在效益呈现负相关 中国减排适合性?国际减排合作?

SSP2-RCP4.5情景相比于SSP5-RCP8.5情景的减排成本和潜在效益

减排成本(US\$/tCO2)

Liu et al., in review

Chinese Population Structure Change

How many people will China and the world need?

Clean Energy and Renewable Energy

Hydro : Traditional, Ecosystem issues

Nuclear : Safety – Not In My Backyard

Wind : Abundant, Intermittency

Solar : Abundant, Intermittency

Biofuel : Energy-food-water nexus

Geothermal: Limited exploitability

Tidal : Limited exploitability

Annual ONSHORE Wind Energy Potential Country by Country

- A network of land-based 2.5 MW wind turbines is assumed to be installed on non-forested, ice-free, non-urban land areas.
- Only those that generate ≥ 20% of their rated capacity are included.

Bus-Bar Price Estimated of Wind Electricity for China

中国能源报,2016/01/20

http://news.bjx.com.cn/html/20160120/702815.shtml

3.12

江苏

浙江

上海

0.378

0.5058

0.4048

3.16

3.3/1.3(内陆)

3.11

Cumulative Available Wind Electricity at Different Bus-bar Price Levels for China

At 0.516 RMB/kWh (about 7.6 US Cents/kWh) profitable wind power would amount to 7 PWh, comparable to total electricity demand projected for 2030 in China.

Challenges for Wind Energy Development

- Wind speed varies dramatically, both spatially and temporally!
 - Temporal variability within the lifetime of a wind turbine
 - Seasonal and interannual: where to set up wind turbines?
 - Hourly, daily: Can we predict wind power?
 - Storage: good wind time ≠ high demand time
 - Spatial variability
 - Good wind regions ≠ high demand regions
 - Electricity transport
 - Power storage
 - Impacts on power grids
 - Transition to 'smart grid'; bi-directional transmission
 - Role of electric cars?
 - Reliability of wind energy estimation
 - Observation based vs. model based
 - Combined with solar energy and/or hydropower ?
 - Negatively correlated diurnally and seasonally

Interannual Variability of Wind Electricity

Seasonal and Diurnal Variations of Wind Electricity

Seasonal Variability

Diurnal Variability

Wang et al., 2016

Different types of CE derived from the energy balance

- What could we do to the energy balance to decrease the present imbalance?
- 1. Reduction of the solar constant
- 2. Increase of Planetary Albedo
- 3. Increase of thermal emissions

Jost Heintzenberg

Solar constant S

Reduction of S by ca. 1.8% through:

- autonomous mirror systems (100000 x 13000 km) at Lagrange point L1
- Reflecting dust rings or screens in near-Earth orbits

Jost Heintzenberg

More reflecting stratospheric aerosol

Deployment through rockets, planes, canons or hoses carried by tethered balloons

Bill Gates funds the balloon approach

Comparison with volcano Pinatubo

Hegerl & Solomon, 2009: Global reduction in precipitation and continental run-off

Jost Heintzenberg

Planetary Albedo Ap

2. Suggestion: John Latham et al.: Brightening of low marine clouds by offering them more sea salt condensationa nuclei (and water vapor) Bill Gates funds this idea as well

10

Planetary Albedo Ap

3.+ 4. Proposal Increase of albedo of agricultural and urban land surfaces

Planetary Albedo Ap

5. Proposal: Eliminate atmospheric particulate black carbon (soot)

Advantage:

Techniques exist. Positive side effects on human health and urban ventilation. Albedo increase of previously soot covered snow and ice regions

Modeling:

Present total influence of soot on Earths energy balance is on the order of the CO₂ heating

Disadvantages:

Most filtered-out combustion particles are not soot but light reflecting particles. Ocean acidification as before

Earth's thermal emission F

Almost all proposals want to increase F_I through the extraction of CO₂ from the atmosphere:

- Acceleration of the physical carbon pump in the ocean
- Acceleration of the physico-chemical carbon pump in the ocean
- Acceleration of the biological carbon pump in the ocean
- Increase of carbon binding in terrestrial plants and plant detritus
- Acceleration of natural weathering
- Technical elimination of CO₂ from the air

The biological carbon pump

- Builds on the Iron hypothesis of Martin (1988)
- Ocean fertilization with substances that stimulate growth of algae
- Advantage: Reduction of CO₂ ocean acidification
- Modeling: Difficult because not all processes are known and because the whole marine food web is affected Disadvantage: After 15 field trials no clear long-term results, however measurable side effects like increased emissions of greenhouse gases
- The fate of biologically fixated carbon does also depend on physical and chemical processes in the oceans

Jost Heintzenberg

Terrestrial biological carbon fixation

- Simplest approach: Large-scale afforestation, e.g., the Sahara
- Disadvantage:
- Model simulations only show a cooling when increasing tropical forests
- The Tundra/Taiga feedback would lead to a warming when increasing boreal forests
- Afforestation of the Sahara needs to consider albedo changes, the west African monsoon and changes of the nutrition effects of Saharan dust

Artificial trees

"Air capture": Direct CO₂ elimination from the air

 The natural elimination of CO₂ takes many centuries after which some 20% for more than 1000 years in the air until it is stored by geological processes

Will Earth evolve on new irreversible climate paths?

ESM Simulated Effects of Geoengineering

General Discussion on Geoengineering

An important point of GE: buy us some time before we don't have to rely on fossil fuels

But:

- Can we fully understand the cost/benefits of GE?
- How about global versus regional impacts?
- Are we going into a different climate state?
- Will GE unintentionally help the continuous reliance of fossil fuels?

In summary: Are we trying to solve a problem by risking for more problems?

WHAT DO YOU THINK?

THE END

THANK YOU FOR YOUR ATTENTION

A Scientific Framework to Address Environmental Problems

Step 1	From economic activity to energy use				
Step 2	From energy use to emissions				
Step 3	From emissions to concentrations in the air				
Step 4	From concentrations in the air to human exposures				
Step 5	From human exposures to health impacts				
Step 6	From health impacts to health valuations				
Step 7	From health valuations to national damages by sectors or fuels				
Step 8	From national damages to cost-benefit of emission control policies				

Future of China's Coal Energy

Coal consumption prediction by different research group was summarized.

46

Source: Xiao Liu