	AGU PUBLICATIONS
1	
2	Geophysical Research Letters
3	Supporting Information for
4 5	Stratospheric ozone loss enhances summer precipitation over the southern slope of the Tibetan Plateau
6	
7 8	Yan Xia ^{1,2} , Yongyun Hu ³ , Yi Huang ⁴ , Jianchun Bian ^{2,5,6} , Chuanfeng Zhao ³ *, Jintai Lin ³ , Fei Xie ¹ , Chunjiang Zhou ⁷
9	¹ School of Systems Science, Beijing Normal University, Beijing 100875, China
10 11	² Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
12 13	³ Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
14 15	⁴ Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A 0B9, Canada
16 17	⁵ College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
18	⁶ College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
19	⁷ School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
20	
21	
22	Contents of this file
23	
24 25	Figure 51-59
26	
27	

29 Fig. S1. Geographic distributions of multi-year average of precipitation (Unit: mm/day) in (a and

d) June, (b and e) July, and (c and f) August over 1979–2022 in (a-c) GPCP and (d-f) ERA5.

31 Black boxes indicate the concerned southern slope of the TP over 26° -30°N and 75°-95°E.

Fig. S2. Correlation coefficients between total ozone and (a-c) high clouds and (d-f) surface UV radiation. The correlation coefficients are calculated over 1979–2022 in June, July, and August based on ERA5 reanalysis. The correlation coefficient of ± 0.3 corresponds to the 95% confidence level for the 41 years. Black boxes indicate the concerned southern slope of the TP over 26°– 30°N and 75°–95°E.

33

41 Fig. S3. Geographic distributions of multi-year averages of (a-c) high clouds (Unit: %) and (d-f)

- 42 surface temperature (Unit: K) in June, July, and August over 1979–2022 in the ERA5.
- 43

46 Fig. S4. Vertical cross-section of multi-year averages cloud cover (color contours) with

47 meridional and vertical winds (vectors) averaged over 75 °-95 °E over 1979-2022 based on

48 ERA5 reanalysis. The units are %, m/s, and 10 hPa/day for the cloud cover, meridional wind, and

49 vertical wind, respectively.

Fig. S5. Vertical cross-section of long-term trends of (a-c) ozone, (d-f) temperature, (g-i) static stability, and (j-l) clouds (color contours) with winds (vectors) averaged over 75 $^{\circ}$ -95 $^{\circ}$ E during 1996–2022 in June, July, and August based on ERA5 reanalysis. The unit of panels (a-c) is 10⁻¹ ppm/decade, (d-f) is K/decade, (g-i) is 10⁻² K/hPa/decade, and then (j-l) is %/decade, and they share the same colormap. Regions with dots are the places where regressions have statistical significance levels higher than the 95% confidence level based on the Student's t-test.

Fig. S6. Geographic distributions of long-term trends of (a-c) total ozone, (d-f) high clouds, (g-i) surface UV radiation, and (j-l) precipitation during 1996–2022 in June, July, and August based on ERA5 reanalysis. The unit of panels (a-c) is DU/decade, (d-f) is %/decade, (g-i) is W m⁻²/decade, and then (j-l) is mm/day/decade, and they share the same colormap. Regions with dots are the places where regressions have statistical significance levels higher than the 95% confidence level based on the Student's t-test.

65 Fig. S7. Geographic distributions of multi-year averages of (a-c) high clouds (Unit: %), (d-f)

66 surface temperature (Unit: K), and (g-i) precipitation (Unit: mm/day) in June, July, and August in 67 the control simulations of CAM6

67 the control simulations of CAM6.

69 Fig. S8. Geographic distributions of responses of (a-c) high clouds (Unit: %), (d-f) surface

70 temperature (Unit: K), and (g-i) precipitation (Unit: mm/day) in June, July, and August in CAM6.

71 Regions with dots are the places where regressions have statistical significance levels higher than

72 the 95% confidence level.

73

Fig. S9. Correlation coefficients between total ozone and (a-c) high clouds, (d-f) surface UV radiation, and (g-i) precipitation based on satellite observations. The correlation coefficients are calculated over 2000–2019 for panels (a-f) and 1998–2019 for panels (g-i) in June, July, and August. The correlation coefficient of ± 0.41 corresponds to the 95% confidence level for the 20 years.